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ABSTRACT

In this paper, we continue our investigation into copula mod-
els for real-valued multivariate features with the goal of com-
pensating for the mismatch in the training and the testing con-
ditions. Previously, we reported results on UCI classification
tasks where our method consistently outperformed other com-
peting classifiers [1]. Here, we extend this work from classifi-
cation to recognition and elaborate further on the mathemati-
cal properties of our models in the form of lemmas. We report
results on the Aurora 4 automatic speech recognition (ASR)
task which contains utterances with wide range of background
noise that are not well represented in the training data. Our
results show that the proposed copula-based models improve
the accuracy by about 7% (11.6 vs 12.4) over a comparable
baseline.

Index Terms— Copula model, Robust speech recogni-
tion, Deep neural network, Aurora 4

1. INTRODUCTION

The performance of current ASR systems degrades severely
when there is a mismatch between training and testing con-
dition, for example, in the presence of background noise of
the type not represented in the training data or in the pres-
ence of significant amount of reverberations or channel dis-
tortions. These variations are currently modeled implicitly by
the ASR acoustic models, specifically by Gaussian mixture
models (GMMs) and more recently by deep neural networks
(DNNs).

The deep neural networks (DNNs) are particularly effec-
tive in large vocabulary tasks with large amounts of training
data. HMMs, on the other hand, are simpler and faster to
train. As such, they are still employed in small tasks with
limited training data. Both these models are capable of repre-
senting real-valued multivariate stochastic processes and have
relatively simple estimation algorithms for learning the opti-
mal parameters for a recognition task from labeled training
data. With enough parameters, the models have the capacity
to easily overfit the training data. Therefore, for good gener-
alization, practitioners cautiously choose the optimal model
size by empirically evaluating the performance on a held-out
data set.

Digging a bit deeper, the features used to extract the nec-
essary information to model speech do not explicitly factor
the observed signal into the additive and convolutional com-
ponents present in the input. The input features presented
to the DNNs are typically the logarithm of the mel-warped
frequencies and GMMs with mel-warped cepstral coefficient.
Both these features have homomorphic properties where con-
volutional noise becomes additive but the additive noise and
the speech signal interact in non-linear manner.

The strategies adopted to disentangle the additive and con-
volutional noise can be broadly categorized into model-based
and feature-based methods. Feature-based method transform
the features to a representation where the effect of additive
and convolutional noise are minimized. The simplest ver-
sion of such a normalization is the well-known cepstral mean-
variance normalization (CMVN) that removes the convolu-
tional channel noise in the homomorphic cepstral domain.
The method assumes that the channel noise varies slowly, a
mild assumption that is often true. The key advantage of this
feature-based method is that it generalizes remarkably well to
test utterances with channels distortions that have never been
seen before. Many other feature-based transformations have
been developed and investigated, but with limited success.
Among them, one of them is notable in that they share the
same motivation as our work [2]. They learn a coarse trans-
formation so that the histogram of their test features matches
those of their training features. Gaussianization also shares
a similar motivation although in their case the transformed
features are more constrained, to have Gaussians marginals.
Both these approaches are ad hoc in that they do not take into
effect the influence of the transformation into the computation
of the likelihood of the input signal. In contrast, our method
as described in Section 4, provides a principled mechanism to
account for the transformation.

Model-based approach such as parallel model combina-
tion attempt to model the stochastic processes associated with
speech and noise [3]. They disentangle the additive noise –
components that are multiplicative with speech in the cepstral
domain – using vector Taylor series approximation. The pa-
rameters of the model are learned in a supervised manner us-
ing training data containing representative noises. They have
shown performance gains in certain tasks for GMM-based
HMM acoustic models, but have not been found to be ef-
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fective in large vocabulary speech recognition. For a more
comprehensive review of different noise reduction techniques
explored so far in the literature, see [3].

One brute force approach that has been remarkably ef-
fective and has gained much popularity recently attempts to
increase the diversity of the training data by artificially dis-
torting the input signal. This technique, often referred to as
multi-style training (MTR) in the literature [4], has been par-
ticularly effective in deep neural networks where the network
has sufficient representational power to model them implic-
itly. The effectiveness of the method depends entirely on the
diversity of the simulated distortions of the input and it is a
non-trivial to task to generate all combinations of potential
sources of input distortions. The two common distortions em-
ployed for this purpose are reverberations and additive back-
ground noise. In the case of reverberation, the distortion is
computed by convolving the input with the impulse response
of a room whose dimensions are specified along with the loca-
tion of the source and the noise, in addition to the type of the
noise. The resultant signal is distorted further with appropri-
ately amplified or diminished background noise of a specified
type. Thus the distortion has a number of parameters, each of
which belongs to an open set, making it impractical to repre-
sent all potential distortions that may be present in real-world
utterance. In contrast to such a brute force method, in this pa-
per, we focus on explicitly addressing the distributional mis-
match between training and testing conditions, especially on
the marginals of the input features.

Copula models provide a principled approach for de-
coupling the marginal distributions from the component that
models the interaction between the random variables. As
such, they are well-suited to address the effect of the mis-
match between the train and test set. This is described in
details in the following section. In fact, it can be shown that
the CMVN and histogram equalization are two special cases
of copula-based models. In section 3, we discuss the optimal
transform that minimize the distance between the train and
test set. Our experiments and the results on Aurora 4 data set
are reported in Section 4. Finally,we conclude with summary
of our key results.

2. COPULA MODEL

Estimating multivariate distribution is still a challenging task
in probability theory and statistics. The standard approach
is to focus the attention entirely on choosing a parametric
form for the joint distribution of the variables. The choice
of joint distribution automatically dictates a specific form for
marginal distributions, which may not be appropriate for a
given application or data. There is no flexibility in picking
a different form of distribution for the marginals even when
such a misfit is known a priori. Except for the mathemati-
cal convenience, there is no real reason why the choice of the
joint and the marginals have to be tightly coupled. For exam-

ple, though the marginal distributions are the same in the two
distributions illustrated in the figure 1, their joint distribution
are markedly different. It would be convenient if the choice
of suitable marginal distribution is decoupled from that of the
joint distribution. Sklar’s theorem provides the necessary the-
oretical foundation to decouple these choices [5]. He showed
that any joint distribution can be uniquely factorized into its
univariate marginal distributions and a Copula distribution.
The Copula distribution is a joint distribution with uniform
marginal distributions on the interval [0, 1]. More formally,
Sklar’s theorem states that any continuous Cumulative Dis-
tribution Function (CDF) can be uniquely represented by a
Copula CDF:

F (x1, x2, . . . , xn) = C(F1(x1), F2(x2), ..., F2(xn)) (1)

where F is an n-dimensional CDF with the marginal CDFs
F1(x1), . . . , Fn(xn) and C is a CDF from the unit hyper-cube
[0, 1]n to the unit interval [0, 1] called Copula CDF. If joint
CDF is differentiable the density function can be computed
by taking the n-th derivative of Equation(1):

f(X) =
∂nC(F1(x1), . . . , Fn(xn))

∂x1 · · · ∂xn
(2)

where X = [x1, x2, . . . , xn]T . By applying the chain rule
to (2),:

f(X) =
∂nC(F1(x1), . . . , Fn(xn))

∂F1(x1) · · · ∂Fn(xn)

×Πn
i=1

dFxi(xi)

dxi
= c(F1(x1), F2(x2), . . . , Fn(n))Πn

i=1fi(xi) (3)

where f1(x1), . . . , fn(xn) are the marginal densities of f and
c(·) is the Copula density function.

Equation (3) shows that any continuous density function
can be constructed by combining a Copula function and a
set of marginal distributions. Furthermore, the Copula func-
tion can be chosen independent of the marginal distribution.
Equation (3) suggests a method for estimating the multivari-
ate density. Since the estimation of the marginal densities are
straightforward, the problem of density estimation can be re-
duced to the estimation of the Copula density function.

3. GAUSSIAN COPULA MODEL

3.1. Definition

Gaussian Copula density is the most common multivari-
ate Copula function and it can be obtained by applying the
method of inversion to standard multivariate Gaussian [6]:

cgaus(U ;R) =
1

|R| 12
exp{−1

2
UT (R−1 − I)U} (4)

Rij =
cov(xi, xj)√
var(xi)var(xj)
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where R is the correlation matrix.
The Gaussian Copula model can be constructed by substi-

tuting the Gaussian Copula density function into Equation (4):

f(X;R,Λ) = cgaus(U ;R)

n∏
i=1

fi(xi;λi) (5)

where ui = Φ−1(Fi(xi)) and Φ−1 is the quantile function of
standard normal distribution.

The main difference between the Gaussian Copula model
in Equation (5), and standard Gaussian distribution is that the
marginal density functions in the Gaussian distribution are
necessarily Gaussian while the marginal density functions of
the Gaussian Copula model can by any continuous density
and this capability makes the Gaussian Copula model more
flexible than the Gaussian distribution.

4. PROPOSED MODEL

In this section, we propose a systematic way based on the
copula model to convert a multivariate distribution f(X) into
another multivariate distribution g(Y ) where X and Y are
two random vectors of size n . For this transformation, we
assume that each distribution is modeled by the its own Gaus-
sian copula density function with a correlation matrix Rf and
a set of the marginal densities :

f(X) = cf (u1, .., un;Rf )

n∏
i=1

fi(xi) (6)

cf (Uf ;Rf ) =
1

|Rf |
1
2

exp{−1

2
UT
f (R−1f − I)Uf} (7)

The support of every element of Uf is [0, 1].

4.1. Finding an optimal transformation

Given X ∼ f(X) and Y ∼ g(Y ) which are the distribution
of test and training data respectively we are looking for an
optimal transformation to convert the distribution f(X) into
g(Y ) to alleviate the mismatch between them. We use the
assumption in (6) and consider three different cases includ-
ing the general case where both test and train data follow
a distribution of form (6) and we show the transformation
shown in figure 1 is the optimal one for mapping the test
data to a new space. An optimal transform is a transform
that minimize a Kullback-Leibler divergence between f and
g. The Kullback-Leibler divergence is always non-negative,
DKL(f ||g) ≥ 0, which is also known as the Gibbs’ inequal-
ity, with DKL(f ||g) = 0 if and only if f = g every where.

Lemma 1: Joint Multivariate Gaussian Distributions
For joint multivariate Gaussian distributions, f(X) = N(0,Σx)

and g(Y ) = N(0,Σy), the mapping Y = Σ
1/2
y Σ

−1/2
x X is

optimal since it reduces the Kullback-Leibler divergence be-
tween f and g to zero. For this special case Fi and Gi in

Eq. (6) would be identity functions such that Fi(xi) = xi and
G−11 (yi) = yi and the optimal mapping can be represented
as a linear weight layer in a neural network as illustrated in
Figure 1.
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Fig. 1. The three components of the transformation necessary
to reduce the KL divergence between the distribution of the
training data x and the test data y.

Lemma 2: Independent Multivariates
For independent multivariate random variables, f(X) =∏n

i=1 fi(xi) and g(Y ) =
∏n

i=1 gi(yi) with cumulative dis-
tributions Fi and Gi respectively, the optimal mapping is
hi = G−1i (Fi) : xi → yi, assuming Gi is invertible. In
this case, the copula term cf in Eq. (6) is identity and the
resulting KL divergence is the minimum attainable value of
zero. In the Figure 1, this corresponds to weights with values
wii = 1 and wij = 0 for i 6= j.

Lemma 3: Joint Distributions with Gaussian Copulas
For two distributions, f(X) = cf (u1, ..., un;Rf )

∏n
i=1 fi(xi)

and g(Y ) = cg(v1, ..., vn;Rg)
∏n

i=1 gi(yi), with Gaussian
Copula model

cj(Uj ;Rj) =
1

|Rj |
1
2

exp{−1

2
UT
j (R−1j − I)Uj}

for j = f, g, the optimal transformation consists of hi =
G−1i (WF ) : X → yi and a linear transformation V =

R
1/2
g R

−1/2
f U which results in KL divergence of zero.

Proof: Consider, the Kullback-Leibler divergence be-
tween cf and cg , DKL(cf (U ;Rf ), cg(U ;Rg)).

=

∫ ∞
−∞

cf (U ;Rf )ln
cf (U ;Rf )

cg(U ;Rg)

exp−U
T IU

√
2π

n dU

=

∫ ∞
−∞

Nn(U ; 0, Rf )ln
cf (U ;Rf )

cg(U ;Rg)
dU

=

∫ ∞
−∞

Nn(0, Rf )ln

1

|Rf |
1
2
exp{− 1

2U
T (R−1f − I)U}

1

|Rg|
1
2
exp{− 1

2U
T (R−1g − I)U}
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=

∫ ∞
−∞

Nn(0, Rf )((
1

2
ln
|Rg|
|Rf |

)

+ (−1

2
UTR−1f U) + (

1

2
UTR−1g U))dU

=
1

2
(tr(R−1g Rf ) + ln

|Rg|
|Rf |

− n)

where n is the dimension of distributions, ui = Φ−1(F (xi)),
F (xi) ∈ [0, 1] is the support of Gaussian copula model. Ap-
plying the linear transformation Vg = R

1/2
g R

−1/2
f Uf and

computing the distribution of cg with respect to the new ran-
dom vector Uf , cg(Uf ;Rf ) will follow the same distribu-
tion as cf (Uf ;Rf ) with correlation parameter Rf , thus the
KL divergence between two Gaussian copula distributions cf
and cg will be zero since ln |Rf |

|Rf | = 0 and tr(R−1f Rf ) = n.
With KL divergence of copula reduced to zero, the remaining
marginals are independent random variables, as in Lemma 2,
for which the optimal transformations once again are given
by hi = G−1i (WF ) : X → yi. QED. In the Figure 1, this
case corresponds to the choice of W = R

1/2
g R

−1/2
f .

5. EXPERIMENTAL RESULTS

We evaluate our proposed method on medium vocabulary
speech recognition task using Aurora 4 [7]that was created by
manually adding different types of noise (street traffic, train
station, car, babble, restaurant, airport ) to standard WSJ0.
The training set we used in this paper consists of 7137 ut-
terances from 83 speakers sampled at 16KHz. The level of
the noise is changing from 5 to 15 DB in the training set.
The evaluation set contains 4620 utterances from 8 different
speakers with noise level ranging from 10 to 20 DB.

In Figure 2, we plot the marginals of the first two filter
bank features computed on the training set (clean and multi-
condition) and the test set. The plots clearly illustrate the
mismatch between the training and test sets even with multi-
conditional data in the training set.

We estimate a Gaussian copula model for all utterances
in the training set. Then, we transform each utterance in the
training set to have a similar distribution that of the entire
training set, akin to the speaker adapted training in ASR mod-
els. After applying the transform, we train a DNN using this
new features. During the test, we estimate the distribution of
the each utterance using the Gaussian copula model and then
apply the necessary transform to map them to the distribution
of training data. Figure 3 shows the results of the matching
the noisy set by clean train set.

ASR experiments, we used the Aurora recipe provided
in Kaldi [8]. We build our ASR by creating a GMM-HMM
model using the MFCC features from scratch. Then, we train
DNN1 using the alignment obtained form the GMM-HMM
baseline using the filter banks. We use the alignment ob-

Fig. 2. Empirically computed marginals on the training set –
clean and multi-conditional data – and the test set for first two
filter bank features.

Fig. 3. Marginals for the test set before and after copula-based
transformations for first two filter bank features.

tained from DNN1 to train DNN2. For comparison with re-
sults in the literature, we choose the number of hidden layers
and other training parameters similar to [9] . In Table 1,
we report the ASR performance of our models under dif-
ferent conditions. In addition to transforming each feature
dimension, we also include second order statistics by com-
puting W = R

1/2
g R

−1/2
f where Rg is a global correlation

matrix over training set and Rf is per utterance correlation
matrix (Copula-DNN-C). The matrices were estimated using
Toeplitz structure [10].

Table 1. Comparison of the ASR performance with different
acoustic models on Aurora 4.

WER
GMM-HMM 19.41

DNN 1 13.95
DNN 2 13.38

DNN noise-aware training [11] 12.4
Copula-DNN 1 (W = I ) 12.16
Copula-DNN 2 (W = I ) 11.80

Copula-DNN-C (W = R
1/2
g R

−1/2
f ) 11.56

6. CONCLUSION

We have presented a copula-based model for transforming the
distribution of the test utterance to that of the training utter-
ances using a Gaussian copula model. We characterize the
theoretical properties of this mapping for three cases. On the
Aurora 4 task, we demonstrate improvement in ASR perfor-
mance over comparable baselines. The reported results can
be further improved by combining this work with masking
and refinements of DNNs, which are complementary to this
work [12, 13].
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