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ABSTRACT 

 
Users from the same geo-location region exhibit similar acoustic 

characteristics, e.g., they have similar accent; even more, they may 

have similar preference to device. In this paper, we propose to build 

geo-location dependent deep neural network for speech recognition, 

where the geo-location signal is inferred from users’ GPS. During 

runtime, the server will base on a user’s geo-location to select the 

right model to recognize his voice. We tackle three major issues 

associated with this model: high train/deployment cost, large model 

size, and train data sparsity. Our solution is featured by its low cost, 

thus practical for production modeling. We also discuss the 

reliability of GPS signal in practical use. The proposed model is 

evaluated on Microsoft Chinese voice search and Cortana live test 

set. Among 12 provinces, it shows an overall 4.8% relative character 

error rate reduction, over a strong baseline production-level model, 

with only 50% model size increase. The gain is larger for the low-

resource provinces, with relative error rate reduction up to 9%. 

Index Terms— geo-location, acoustic modeling, speech 

recognition 

1. INTRODUCTION 

Deep neural network hidden Markov model (DNN) [1] is more 

robust than Gaussian mixture hidden Markov model (GMM), for 

different accent, speakers, and noise. However, it is still beneficial 

to consider these variations during model building: by adapting the 

model to different accent [2, 3], and different speakers [4, 5]; or by 

explicitly augmenting the input with noise signal [6]. 

We observe that users from the same geo-location region have 

similar acoustic characteristics, e.g., they have similar accent; even 

more, they may have similar preference to device.  Thus, instead of 

using one DNN to handle users’ voice from different geo-locations, 

we propose to build geo-location dependent DNN. The geo-location 

signal of a user has different levels of granularity: GPS, and its 

derived city, province (state), and country. In this paper, we will use 

province (state) level signal. In runtime, there will be a set of DNNs 

in speech server, each for one province. When a user calls the 

service, his current province inferred from GPS will be used as the 

signal to choose the right model to recognize his voice. 

Geo-location information has been used to build language model, 

and shown good gain [7]. In acoustic model, the most related 

research is accent model [2, 3, 8], i.e., to build one model for each 

accent region. One way to get accent signal is to ask the user to 

specify his accent when using the application. However, users are 

not always cooperative in practice. A more feasible way is to 

automatically identify the users’ accent [9]. The accent 

identification module introduces additional runtime cost, and is not 

always correct. Also, to train a robust identification module requires 

a lot of accent labeled data, which is costly. Unlike accent model, 

our method directly derives a user’ province from his GPS, which is 

zero-cost in both runtime and data labeling. 

The number of provinces in a country is usually large. Take China 

for example, there are 34 provinces. That means we need to build 34 

geo-location dependent DNNs (GLD-DNN). Compared with geo-

location independent DNN (GLI-DNN), it poses several challenges. 

Firstly, it will increase significantly the model size, training and 

deployment cost. Secondly, the train data of each GLD-DNN is only 

a small subset of that of GLI-DNN, which causes data sparsity issue.  

To reduce the training cost, we propose a simple training recipe 

to update the baseline multi-style sequential trained GLI-DNN by a 

sequential adaptation with specific geo-location data. The 

adaptation will re-use most of the files already generated by GLD-

DNN, e.g., feature files and sequential training lattices. Thus, the 

additional training cost on top of GLI-DNN is very small. 

Furthermore, starting from a robustly trained GLI-DNN, the adapted 

GLD-DNN is less likely to deviate from a good model, relieving the 

data sparsity issue. Section 3 describes the training recipe in detail. 

To reduce model size and tackle data sparsity, we apply singular 

value decomposition (SVD) bottleneck adaptation. SVD bottleneck 

adaptation was originally proposed in [4] for speaker adaptation, 

which updates only a small part of DNN parameters and requires 

less data. As a result, each GLD-DNN only needs to store the small 

amount of adapted parameters. Section 4 introduces SVD bottleneck 

adaptation, and compares it with other adaptation methods. 

In practice, we found that the data from some provinces are 

similar to each other. In Section 5, we propose a simple way to 

cluster the training data based on cross-test results. This technique 

further relieves the data sparsity problem, and helps a lot in limited-

resource provinces. The geo-location and accent are considered 

related. In Section 6, the performance of GLD-DNN on accent 

speech is evaluated. In Section 7, we discuss the reliability of the 

geo-location signal. Specifically, what happens when people travel 

from one province to another. 

2. EXPERIMENTAL SETTINGS 

2.1. Data 

We are working on Chinese geo-location models, though this 

technique could be applied to other languages as well. The data are 

hand-transcribed anonymous utterances from Microsoft voice 

search and Cortana traffic in China market.  Each utterance is 

annotated with its user’s province information, obtained from the 

user’s query log. The query log is strictly anonymous. 
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    All the training utterances are used to train GLI-DNN. To build 

GLD-DNN, the data is partitioned into groups, each representing a 

province. We choose the top twelve largest groups (provinces), and 

build a GLD-DNN for each of them. The twelve provinces represent 

the top markets in China, which contribute half of the whole data 

traffic. Users from the rest of the provinces will still use the GLI-

DNN. The training and test data statistics are listed in Table 1. On 

average, each utterance has a duration of 3.1 seconds. 

Table 1. Data statistics 

Province #Train 

Hours 

#Train 

Utterances 

#Test 

Utterances 

Guangdong 409 473,616 8,680 

Beijing 355 408,487 7,772 

Shandong 182 210,120 2,718 

Jiangsu 130 152,868 2,580 

Zhejiang 123 142,413 2,420 

Hebei 105 122,115 2,476 

Sichuan 84 96,824 1,984 

Shanghai 85 98,292 1,686 

Hubei 73 85,585 1,446 

Hunan 53 66,223 966 

Tianjin 53 62,459 1,016 

Liaoning 44 57,779 1,024 

All 1696 1,976,781 34,768 

 

2.2. Language Model 

A 4-gram language model is used. The vocabulary size is around 

200K. The number of n-grams is about 40 million. 

2.3. Acoustic Model 

The DNN model has 6715 nodes in the output layer. The input 

feature contains 74 dimensions: 22-dimension log-filter-bank with 

up to the 2nd order derivative, plus 8-dimension pitch related 

feature. The feature is computed every 10ms over a 25ms window. 

We also augment the feature vectors with previous and next 5 frames 

(5-1-5).  The DNN is SVD based, the detailed configuration is given 

in the next section. 

3. GLD-DNN TRAINING RECIPE 

The GLD-DNN training recipe is shown in Figure 1. Data from all 

provinces is used to train GLI-DNN. The model is then adapted by 

each province’s data to get the corresponding GLD-DNN. 
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Figure 1: GLD-DNN training recipe 

3.1. GLI-DNN Training 

The model is first trained with cross entropy (CE) criterion. The 

resulting DNN has 5 hidden layers, each with 2048 units. SVD 

reconstruction is then applied, which reduces the model size by 80% 

and keeps the same accuracy. This resulting model is SVD 

structured. Finally, the sequential training with maximum mutual 

information (MMI) criterion [10, 11] is applied to the SVD DNN, 

with a learning rate of 5E-4. F-smoothing is used [10] with weight 

0.05 assigned to CE in the objective function. 

3.2. SVD Reconstruction for GLI-DNN 

SVD reconstruction was first proposed in [12]. It utilizes the low-

rank property of DNN matrices to reduce the DNN model size while 

maintaining the accuracy. This method applies SVD [13] to each 

weight matrix 𝑨 in DNN to get:  

𝑨𝒎×𝒎 = 𝑼𝒎×𝒎𝚺𝒎×𝒎𝑽𝒎×𝒎
𝑻 ,                              (𝟏)  

where 𝚺  is a diagonal matrix with 𝑨 ’s singular values on the 

diagonal in decreasing order. By keeping 𝒌 biggest singular values 

of 𝑨, Equation (1) becomes 

𝑨𝒎×𝒎 ≈  𝑼𝒎×𝒌𝚺𝒌×𝒌𝑽𝒌×𝒎
𝑻 =  𝑼𝒎×𝒌𝑵𝒌×𝒎 ,              (𝟐) 

where 𝑵𝒌×𝒎 = 𝚺𝒌×𝒌𝑽𝒌×𝒎
𝑻 . In this way, the weight matrix 𝑨  is 

decomposed into two smaller matrices 𝑼 and 𝑵. As shown in Figure 

2, the SVD reconstructed DNN introduces a small SVD bottleneck 

layer with 𝒌 neurons between two large hidden layers with size 𝒎 

in the original model. And the number of parameters in weight 

matrices is changed from the original 𝒎 × 𝒎  to 𝟐 × 𝒎 × 𝒌 . 

Usually, 𝒌 is much smaller than 𝒎. In our case, 𝒎 is 2048, and 𝒌 is 

around 300. Therefore, the number of parameters is significantly 

reduced.  

    As can be seen in Equation (2), the SVD reconstruction gives only 

an approximation of the original weight matrix, so the resulting 

model still has some accuracy degradation. In practice, we retrain 

the reconstructed SVD DNN to update weights, which usually will 

get back the accuracy loss. 
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      Layer l
 

Figure 2(a): Original DNN model  
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Figure 2(b): SVD reconstructed DNN model 

3.3. GLD-DNN Training 

Each GLD-DNN is adapted from GLI-DNN with its own province’s 

data. The adaptation criterion is also MMI. Compared with GLI-

DNN, due to the limited amount of data, a smaller learning rate of 

1E-4 is used. The F-smoothing weight is the same as GLI-DNN, 

with 0.05 weight assigned to CE in the objective function. We also 

tried KL divergence regularization [14] and different F-smoothing 

weights, but did not find better results. It is likely due to our learning 

rate is very small, which already acts like regularization.  

    The feature files and lattices used by GLD-DNN adaptation are 

already generated during GLI-DNN training. So, we could reuse 

them. As a result, the adaptation is very fast, and the training cost on 

top of GLI-DNN is small.  

SVD Adapt 

. 

. 

. 
SVD Adapt 
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4. GLD-DNN ADAPTATION 

Despite GLI-DNN is SVD based and already smaller compared with 

conventional DNN, we still can’t afford to update all the parameters 

during GLD-DNN adaptation. In this section, we propose to adapt 

only a small part of the parameters in the network, while keeping 

other parameters unchanged. The adapted parameters are considered 

to model the province dependent information, while the unchanged 

ones capture the province independent information. Doing in this 

way is also good for deployment. The speech server only needs to 

store one set of province independent parameters, and 12 sets of 

province dependent parameters. In runtime, the user’s province 

signal will be used to select the province dependent parameters, 

which will be assembled with province independent parameters to 

form the final DNN for recognition. This section compares 3 

different ways to do GLD-DNN adaptation: (1) top layer adaptation 

(2) SVD bottleneck adaptation (3) hybrid adaptation.  

4.1. Top Layer Adaptation 

It was found in [2, 3] that the DNN top layer has well captured the 

accent information. Since geo-location is closely related to accent, 

it is reasonable to try only adapting the top layer. Specifically, for 

the SVD DNN in our system, only the two matrices 𝑼𝒎×𝒌  and 

𝑵𝒌×𝒎 in top layer will get adapted. 

4.2. SVD Bottleneck (BN) Adaptation 

SVD bottleneck (BN) adaptation was first proposed in [4] for 

speaker adaptation. It adds an additional linear layer on top of the 

original SVD bottleneck layer as shown in Figure 3. This introduces 

an additional square matrix 𝑆𝑘×𝑘. We initialize the matrix 𝑆𝑘×𝑘 to 

be an identity matrix, such that the resulting model is equivalent to 

the original model as shown in Equation (3). 

𝑼𝒎×𝒌𝑵𝒌×𝒎 = 𝑼𝒎×𝒌𝑺𝒌×𝒌𝑵𝒌×𝒎,                                                    (𝟑) 
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Figure 3: SVD bottleneck adaptation 

During GLD-DNN adaptation, we only update the parameters in 

𝑺𝒌×𝒌 , while keeping the other parameters in 𝑼𝒎×𝒌  and 𝑵𝒌×𝒎 

unchanged. In our case with 𝒎 to be 2048, and 𝒌 to be 300, this 

reduces the number of adapted parameters: from 𝟐 × 𝟐𝟎𝟒𝟖 × 𝟑𝟎𝟎  

to 𝟑𝟎𝟎 × 𝟑𝟎𝟎. This parameter reduction enables us to update all 

five layers’ 𝑺𝒌×𝒌, and still has much smaller number of parameters 

compared with top layer adaptation in Section 4.1: 𝟑𝟎𝟎 × 𝟑𝟎𝟎 × 𝟓 

for SVD BN adaptation, and 𝟑𝟎𝟎 × 𝟐𝟎𝟒𝟖 + 𝟑𝟎𝟎 × 𝟔𝟕𝟏𝟓 for top 

layer adaption, with 6715 to be the output layer size.  

4.3. Hybrid Adaptation 

This method basically combines the top layer adaptation and 

SVD BN adaptation. The only difference compared with SVD BN 

adaptation is that more parameter budget is given to the top layer, 

to emphasize its importance. Specifically, for the top layer, we 

update all 3 matrices 𝑺𝒌×𝒌, 𝑼𝒎×𝒌 and 𝑵𝒌×𝒎. For the rest 4 layers, 

same as SVD BN adaptation, we only update matrix 𝑺𝒌×𝒌 . The 

adapted number of parameters for this method is the sum of the 

above 2 methods. 

4.4. Comparison of Adaptation Methods 

The character error rate (CER) of GLI-DNN and GLD-DNN by 

different adaptation methods is shown in Table 2. The CER 

reduction (CERR) is over the CER of GLI-DNN. 

Table 2. Evaluation of different adaptation methods 

Province 

GLI-

DNN 
Top Layer SVD BN Hybrid 

CER CER CERR CER CERR CER CERR 

Guangdong 14.99 14.58 2.7% 14.44 3.7% 14.37 4.1% 

Beijing 14.6 14.42 1.3% 14.17 3.0% 14.15 3.1% 

Shandong 14.21 13.51 4.9% 13.33 6.2% 13.38 5.8% 

Jiangsu 12.98 12.63 2.7% 12.38 4.6% 12.43 4.2% 

Zhejiang 14.75 14.47 1.9% 14.07 4.6% 14.11 4.5% 

Hebei 13.44 13.03 3.1% 12.88 4.2% 12.81 4.8% 

Sichuan 13.81 13.12 5.0% 13.07 5.4% 13.13 4.9% 

Shanghai 13.37 12.79 4.3% 12.74 4.7% 12.69 5.1% 

Hubei 13.71 13.52 1.4% 13.57 1.0% 13.53 1.3% 

Hunan 14.43 13.98 3.1% 13.57 6.0% 13.67 5.3% 

Tianjin 14.39 13.74 4.5% 13.99 2.8% 13.87 3.6% 

Liaoning 12.08 12.04 0.3% 11.21 7.2% 11.15 7.7% 

All 14.25 13.88 2.6% 13.68 4.0% 13.66 4.2% 

    SVD BN adaptation consistently outperforms top layer 

adaptation, which indicates that top layer alone is not sufficient to 

capture all the information in geo-location. Indeed, geo-location 

contains richer information than accent. For example, people from 

the same province tend to buy similar devices. This low-level 

device/channel information is known to be better captured by layers 

near input. Hybrid adaptation is slightly better than SVD BN, but 

with much more adapted parameters. As a tradeoff between 

accuracy and model size, we choose SVD BN adaptation. By this 

method, deploying 12 provinces’ GLD-DNNs only requires 50% 

model size increase over baseline GLI-DNN. 

5. DATA CLUSTERING 

In practice, we observe that the users from some provinces may have 

similar acoustic characteristics, esp. for the provinces that are close 

to each other in geo-location. This section studies the data clustering 

to further solve the data sparsity issue for GLD-DNN. Both 

knowledge and data driven methods are tried. 

5.1. Clustering by Accent Region 

Linguistics divide China into several accent regions. Since geo-

location and accent are well correlated, we borrow the accent region 

definition to divide our 12 provinces into 4 disjoint accent regions 

in Table 3. As a result, the number of GLD-DNNs is reduced from 

12 to 4. 

Table 3. The division by accent regions 
Accent Region Provinces 

Xiang Hunan 

Cantonese Guangdong 

Wu Jiangsu, Zhejiang, Shanghai 

Northern 
Beijing, Shandong, Hebei, Sichuan, Hubei, 

Tianjin, Liaoning 
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5.2. Clustering by Cross Test Result 

We propose a very simple cross-test result driven method to cluster 

the training data. This method assumes we have already trained the 

baseline GLD-DNNs, one per province. 

    To find which other provinces’ data is helpful to train GLD-DNN 

of province A, we test all other 11 provinces’ GLD-DNNs on the test 

data A of province A. The 11 provinces are sorted based on its test 

accuracy on set A in decreasing order. The top n (usually one or two) 

provinces’ data is considered to be helpful for building province A’s 

model, and will be combined with A’s own data to update the GLD-

DNN for province A. The choice of the number n depends on how 

many data the province A already has, and how good is the cross test 

accuracy. 

    This method does not reduce the number of GLD-DNNs. Also, it 

is not a strict hard-clustering, as the province C’s data may be used 

to train both province A and B’s models by this method. It is worth 

mentioning that we also tried hard data clustering with similar data 

driven technique, but did not get better results than this method. 

5.3. Comparison of Clustering Methods 

The CERR in Table 4 is over the baseline GLD-DNN (one per 

province, no clustering). Clustering by accent region turns out to 

degrade the performance, while clustering by cross test results gives 

consistent CERR among different provinces. The provinces in the 

table are sorted in decreasing order of its training data size. It is clear 

to see that the cross-test clustering method helps more on low 

resource provinces.  

    The last column of the table shows the clustered GLD-DNN error 

reduction over the baseline GLI-DNN, with an overall error 

reduction of 4.8%. Better error reduction is found in low resource 

provinces (e.g., 8% for Sichuan, 9% for Hunan, and 9.1% for 

Liaoning). Since the baseline GLI-DNN is a strong production 

model, and the GLD-DNN does not require more train data and is 

also cheap to train and deploy, we consider this as a nice gain. 

Table 4. Evaluation of different clustering methods 

Province 

 

GLD- 

DNN 

 

Clustering 

by Accent Region 

Clustering 

by Cross Test Result 

CER CER CERR CER CERR 

CERR over 

GLI-DNN 

Guangdong 14.44 14.44 0.0% 14.44 0.0% 3.7% 

Beijing 14.17 14.43 -1.8% 14.17 0.0% 3.0% 

Shandong 13.33 13.66 -2.5% 13.12 1.6% 7.7% 

Jiangsu 12.38 12.58 -1.6% 12.38 0.0% 4.6% 

Zhejiang 14.07 14.28 -1.5% 14.07 0.0% 4.6% 

Hebei 12.88 12.95 -0.5% 12.64 1.9% 6.0% 

Sichuan 13.07 13.31 -1.8% 12.7 2.8% 8.0% 

Shanghai 12.74 12.7 0.3% 12.7 0.3% 5.0% 

Hubei 13.57 13.94 -2.7% 13.02 4.1% 5.0% 

Hunan 13.57 13.57 0.0% 13.13 3.2% 9.0% 

Tianjin 13.99 13.78 1.5% 13.63 2.6% 5.3% 

Liaoning 11.21 11.86 -5.8% 10.98 2.1% 9.1% 

All 13.68 13.84 -1.2% 13.57 0.8% 4.8% 

6. IMPACT ON ACCENT RECOGNITION 

To further verify the relationship between GLD-DNN and accent, 

we collected some heavy accent Guangdong test data, and evaluated 

the models. This is a small test set with 465 utterances (the number 

of characters is 3066).  

    Table 5 shows that Guangdong GLD-DNN could get 8% CERR 

on heavy accent data. The gain on this set is even larger than that in 

Guangdong province data (3.7% CERR in Table 4).  One difference 

between the two sets is that this data is heavy accent data, and the 

previous Guangdong province data is randomly sampled live data, 

with various level of accent. It seems to suggest that the GLD-DNN 

is more pronounced for heavy accent users with bad WER. 

However, since the test set is small, we are caution to make the 

conclusion. Collecting more and larger accent data sets on different 

provinces is needed to further confirm the findings. 

Table 5. Evaluation on Guangdong heavy accent data 

Test Set 
GLI-DNN GLD-DNN 

CER CER CERR 

Guangdong Heavy Accent 28.08 25.86 8% 

 

7. RELIABILITY OF GEO-LOCATION SIGNAL 

One common worry is the reliability of GPS inferred geo-location 

signal. Since a user does not always stay in the same province, this 

signal will change and could be noisy.  

    We argue that as long as the region is large (in our case, province), 

most of the time, GPS location represents the place people live. Our 

internal data analysis reveals that: among all the queries of a specific 

user, 90% of them occur in the same province. In other words, at 

most 10% of the data is noisy. Such a small proportion of outliers 

could be well handled by DNN, so it won’t hurt much for model 

training.  

However, the situation maybe more serious in decoding. For 

example, when a Beijing user travels to Shanghai, he will end up 

using the Shanghai model to recognize his voice. To quantify the 

impact, we conduct a cross test. Specifically, for each province’s test 

data, we test it using all other 11 provinces’ GLD-DNNs. The 

recognition error of test set A with GLD-DNN B mimics the error a 

user from province A will get, when he travels to province B. If this 

error is 3% relative higher than that tested by GLI-DNN, we 

consider it to be a serious degradation. Our results show that: among 

all cross-test 𝟏𝟐 × 𝟏𝟏 pairs, only 7 pairs get serious degradation, 

amounting to a ratio of 5%. Consider together with the fact that only 

10% of the time, people are in travel, the overall degradation chance 

is estimated to be only 5/1000. Thus, the impact is small, and the 

GPS signal is considered to be reliable. 

8. CONCLUSIONS & FUTURE WORK 

We propose to build geo-location dependent DNN for ASR, where 

the geo-location signal is inferred from the user’s GPS location. The 

main contributions of this paper are two folds: (1) the novel use of 

GPS inferred geo-location signal for acoustic modeling, and show 

the reliability/feasibility of the GPS inferred signal (2) low cost 

solution to tackle high train/deployment cost, large model size, and 

data sparsity, thus make it practical for production models. 

    The idea of GLD-DNN could also be applied to other languages, 

with a different granularity of geo-location signal. For example, our 

colleagues have recently used GPS inferred country information to 

select the Indian users’ data from the global English live data traffic. 

The selected data is used to adapt the native English model to an 

Indian English model. When evaluating on the Indian users’ test 

data, the Indian English model results in around 30% relative word 

error rate reduction, compared with the native English model.  

    Finally, for some applications where user is willing to provide his 

home information, we could directly use it as the geo-location 

signal. Since the home signal is provided or confirmed by the users, 

it is supposed to be more reliable than GPS inferred signal.  
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