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ABSTRACT

A characteristic property of biological neurons is their ability
to dynamically change the synaptic efficacy in response to variable
input conditions. This mechanism, known as synaptic depression,
significantly contributes to the formation of normalized represen-
tation of speech features. Synaptic depression also contributes to
the robust performance of biological systems. In this paper, we de-
scribe how synaptic depression can be modeled and incorporated
into deep neural network architectures to improve their generaliza-
tion ability. We observed that when synaptic depression is added
to the hidden layers of a neural network, it reduces the effect of
changing background activity in the node activations. In addition,
we show that when synaptic depression is included in a deep neural
network trained for phoneme classification, the performance of the
network improves under noisy conditions not included in the train-
ing phase. Our results suggest that more complete neuron models
may further reduce the gap between the biological performance and
artificial computing, resulting in networks that better generalize to
novel signal conditions.

Index Terms— synaptic depression, neural network, deep
learning, phoneme recognition

1. INTRODUCTION

One of the major differences between biological neurons and the
neuron models used in artificial neural networks is the ability of
synaptic weights to change dynamically [1, 2, 3, 4, 5] in response
to the fluctuations in the input to the neuron. One such mecha-
nism is synaptic depression [2, 6, 7], a decrease in presynaptic effi-
cacy from prolonged neurotransmitter release. Synaptic depression
is widespread across cortical synapses [3]. Theoretical and experi-
mental work has shown that synaptic depression can play a critical
role in neural circuits [8, 9]. For example, our own experimental
work has shown an important role for this mechanism in primary
auditory cortical neurons in the formation of a robust representation
of an acoustic stimulus that remains unchanged in noisy and rever-
berant conditions [10]. Since current neural network models do not
generalize well to conditions not included in their training, it may be
important to determine whether these mechanisms can benefit these
models, particularly in generalization to unseen conditions. In this
paper, we studied ways by which synaptic depression can be mod-
eled efficiently and the distinct computation that a system with dy-
namic synaptic connection can perform. Furthermore, we incorpo-
rated the synaptic depression into the a deep neural network model
trained for phoneme recognition in clean speech which resulted in
improved classification accuracy in a variety of unseen noisy condi-
tions.
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2. METHODS

To create efficient models of synaptic depression and gain insight
into their computational principles, we started with the standard neu-
ron model, which consists of the weighted sum of the inputs fol-
lowed by a nonlinear transformation (e.g. Rectified Linear [11]) of
the form: y(t) = f(z(t)), where z(t) =

∑
i wixi(t) + b, and xi is

the input to the neuron, wi is the weight associated with each input,
b is the bias of the neuron.

2.1. Modeling synaptic depression

Models of synaptic depression capture the nonlinear dynamics
caused by decreased synaptic weights of a neuron [7]. This assumes
that depression at a given synapse could be explained by two param-
eters: the rate of vesicle depletion per presynaptic action potential
and the time constant of vesicle recovery [2]. This phenomenon
has been functionally modeled in two alternative ways. In the first
approach, which we call weight depression, each synaptic weight,
w, has a multiplicative depression factor. The alternative approach,
which we refer to as bias depression, dynamically changes the bias
parameter of the neuron, b, depending on the overall input to the
neuron. While the general effect of these two models is the same,
there are important functional differences because each can be more
effective under specific signal distortions, such as additive versus
multiplicative noises.

2.1.1. Weight Depression

This model assigns a multiplicative depression factor to every weight
in the network [12] (Fig. 1a). The depression factor, di,w(t) , is
estimated using a recursive equation:

di,w(t) = (1 − 1

τ
)di,w(t− 1) + vxi(t− 1)(1 − di,w(t− 1)) (1)

where the depression factor d, bounded between 0 (fully recovered)
and 1 (fully depressed), is the time constant of vesicle recovery and
represents the rate of vesicle depletion per presynaptic action poten-
tial. The equation of a standard neuron is then modified accordingly:

y(t) = f(Σiwi(t)xi(t)(1 − di,w(t)) + b) (2)

Effectively, this operation modulates each weight of the standard
neural network dynamically based on the short-term history of its
corresponding input. Therefore, if one input becomes very large,
the neuron automatically decreases the contribution of that input to
maintain the same computation. If we assume a constant input, the
depression coefficient will converge to τvx

1+τvx
, resulting in the effec-

tive input of x
1+τvx

. Therefore, the equation of the neuron in equi-
librium is y(t) = f(

∑
i wi(t)

xi
1+τvxi

) . If we choose τv such that
τvxi � 1 in normal signal condition, then the small inputs remain
almost unchanged and the network operates as if synaptic depres-
sion is not present. However, large inputs to the neuron will become
compressed (Fig. 1.b). This mechanism is particularly effective in
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Fig. 1. Charaterizing the effect of synaptic depression in a model neuron. a) A neuron with weight depression is able to normalize the
variations in input gain, b) A neuron with bias depression is able to normalize the deviations of the summed input from its expected mean. c)
Interaction between neuron’s nonlinearity and the synaptic depression in separating signal (blue) and noise (red).

suppressing multiplicative distortions where each xi is replaced with
mixi . Figure 1 shows the simulation result of a simple neuron with
two inputs. Comparing of the output of the neuron with and without
depression shows increased robustness to unwanted gain variations
of the input.

2.1.2. Bias Depression

The alternative model for synaptic depression is the dynamic spike
threshold model [13, 14], in which the threshold of spiking for each
neuron can vary over a broad range depending on the sum of the
weighted input to the neuron, z(t):

db(t) = (1 − 1

τ
)db(t− 1) + vz(t− 1) (3)

This model is then integrated into the standard neuron model as a
dynamic change of the bias:

y(t) = f(Σiwixi + b− db(t)) (4)

This mechanism effectively tracks the long-term average of the over-
all input to a neuron and can correct any deviation from this mean.
For example, if each input is corrupted with additive noise ci, then
the new input to the neuron will be

∑
i wi(xi+ci)+b =

∑
i wixi+

b+
∑
i wici . If the bias b adapts dynamically to this change, it can

effectively cancel out the noise term
∑
i wici. Unlike the weight de-

pression (equation 1), bias depression (equation 3) is linear and can
be analyzed accordingly: Db(ω)

Z(ω)
= v

1−(1− 1
τ
)ejω

. The simulation

shown in Fig. 1 shows how a change in the bias of inputs can be
normalized using the dynamic bias depression model.

2.2. Interaction between synaptic depression and the nonlinear-
ity

Neural network models can warp the input feature space nonlinearly
and implement complex decision boundaries using many canonical
nonlinear projections (e.g., sigmoid or rectified linear nonlinearity)
[15]. Nonlinear computations, however, are very sensitive to the
range of the input (operating point), otherwise the nonlinearity may
not operate as it was intended [16, 17]. Dynamic synaptic changes
proposed here could play a crucial role in keeping the system within
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Fig. 2. (top) Noisy speech passes through a standard auto-encoder
neural network model with one hidden layer, (mid) adding synaptic
depression in the hidden layer reduces the background noise in the
output. (bottom) The dynamic of depression parameters for a single
frequency channel shown by arrowhead.

the correct operating range. As a result, these dynamic mechanisms
combined with the nonlinearity of neurons cannot be seen merely as
a mean normalization. This point is illustrated in Fig. 1.c, showing
a rectified-linear neuron with one input and bias, b . The neuron
performs a nonlinear filtering by passing the signal (blue) through,
while completely eliminating the noise (red). A change in the bias
of the input can result in non-optimal filtering (Fig. 1.a, bottom).
An adaptive threshold however, b−db(t), can track this change, and
restore the intended nonlinear computation of this example neuron.
An increase in the gain on the other hand can also produce non-
optimal output (1.c), a distortion that can be compensated for by
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Fig. 3. (left) Dependence of convergence speed of a neuron with bias depression as a function of 1
τ

. (middle and right) Phoneme classification
accuracy with varying 1

τ
values in various noise types and different SNR values.

weight depression model which effectively changes the slope of the
transformation.

3. NEURAL NETWORK MODELS WITH BIAS
DEPRESSION

Since many of the noises that naturally occur in real-world condi-
tions are additive, we focus on bias depression model (equation 3)
for the remainder of this paper and examine its effective computa-
tion when integrated in an artificial neural network model. First,
we test the bias depression model in an auto-encoder network to
show how the background activity is suppressed in the reconstructed
output with and without depression. Second, we show the effect
of integrating the bias depression model into a multilayer neural
network model trained for phoneme recognition. To evaluate the
performance of the network with synaptic depression, we used
a frame-wise phoneme classification task to directly measure the
effect of this added mechanism on the acoustic model. The classifi-
cation accuracy with synaptic depression is then evaluated in noisy
conditions that were not included in the training of the networks.

3.1. Autoencoder with Synaptic Depression

To provide an intuitive account of how this process works in a neu-
ral network model, we first incorporate the proposed bias depression
model in an autoencoder network [18]. The input and output of the
network are 128 frequency channels, and the network has one hid-
den layer consisting of 128 rectified linear neurons. The autoencoder
network is trained to reconstruct the time-frequency representation
of speech. Fig. 2 shows the simulation results of this network. In
the absence of synaptic depression in the hidden layer, additive noise
passes through the network and the reconstructed signal is also noisy
(Fig. 2, top). However when the bias depression model (equation 3)
is added to the hidden layer neurons, this mechanism adapts the ac-
tivation threshold to the changing statistics of the input and removes
the additive background activity (Fig. 2, middle). Figure 2, bottom
shows the effect for one frequency channel, where the increased bias
due to noise is subtracted out after depression. The auto-encoder
network intuitively shows how bias depression could make conven-
tional neural networks more robust to the changes in input signal
conditions.
3.2. Phoneme classification using a DNN with Synaptic Depres-
sion

Next, we quantified the effect of synaptic depression using a neu-
ral network model trained for phoneme classification. We used the
frame-wise phoneme classification metric to explicitly measure the
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Fig. 4. Average node activation in clean and noisy speech in hidden
layers of the deep neural network with and without bias depression
(shown in black and red accordingly). Here 1

τ
= 0.003.

accuracy of the acoustic model with and without synaptic depres-
sion. We also studied how parameters such as noise type, SNR, and
the speed of convergence 1

τ
affect the results.

The phoneme classification network used has four hidden layers with
rectified linear nonlinearity and was trained on clean speech on the
TIMIT corpus [19]. The network had an input layer with 792 di-
mensions corresponding to 11 frames of 24-dimensional log-Mel
filter bank coefficients, deltas, and double deltas. There were 4 hid-
den rectified linear layers with 128 nodes each and a sigmoid output
layer with 40 nodes corresponding to the HMM emission probability
of one of 39 English phonemes and silence. The model parameters
were initialized using unsupervised RBM layer-wise pretraining and
then fine-tuned using 25 epochs of backpropagation with minimiza-
tion of mean square error objective function. Various types of noise
from the Noisex database [20] were then added to the test samples
at different SNR levels to probe the performance of the network in
variety of signal conditions. We used frame-wise phoneme classifi-
cation accuracy to measure the performance, excluding the silence
category. The accuracy on Timit test subset in clean is 56.65%.
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SNR White Noise Pink Noise Jet Noise City Noise Average

INF 56.65% / 54.61% – – – –
20 35.81% / 41.39% 42.89% / 45.33% 42.13% / 43.83% 47.07% / 46.84% 41.98% / 44.35%
15 27.39% / 34.63% 34.27% / 38.99% 33.13% / 37.18% 41.03% / 42.22% 33.96% / 38.26%
10 19.05% / 26.71% 24.83% / 31.69% 24.28% / 29.23% 33.11% / 35.52% 25.32% / 30.79%
5 12.38% / 19.37% 15.89% / 22.52% 15.48% / 20.94% 23.40% / 27.92% 16.79% / 22.69%
0 7.90% / 14.17% 9.15% / 14.83% 8.45% / 13.85% 14.95% / 19.52% 10.11% / 15.59%

Average 20.51% / 27.25% 25.41% / 30.67% 24.69% / 29.01% 31.91% / 34.40% –

Table 1. Classification accuracy, number in each entry is obtained by network without depression / with depression

3.2.1. Choosing the depression parameters

The recursive equation used in these networks can be also expressed
in the following form:

db(t) = (1 − 1

τ
)db(t− 1) +

β

τ
(z(t− 1) − z̄) (5)

where β = τv. We assume the average node activation z̄ in clean
speech conditions can be measured during the training and is known.
When the network is faced with noisy speech, this mechanism re-
stores the expected average node activation as in the clean condi-
tion. Typically β should be slightly smaller than 1 to ensure that
depression minimizes the difference between z and z̄. The depres-
sion parameter 1

τ
determines the duration of the signal that affects

the computation, and therefore, specifies the rate of convergence for
the bias depression model. At one extreme, when 1

τ
= 0, the effect

of z disappears completely; hence, db will remain unchanged. On
the other extreme, when 1

τ
= 1, db will always stay at β(z − z̄)

and will not adapt the activation threshold dynamically. A simple
simulation shown in Fig. 3 illustrates the effect of 1

τ
on the conver-

gence speech. Small values of 1
τ

result in long adaptation of the bias,
where large 1

τ
values can potentially distort the stimulus Fig. 3 (left)

by following it too quickly. An optimal value of 1
τ

can therefore
be found to maximize an objective function, e.g., phoneme classifi-
cation accuracy in noisy conditions. The dependence of optimal 1

τ
on phoneme classification in various noise types and signal to noise
ratios is shown in Fig. 3. Despite the slight differences between the
plots in Fig. 3, the overall trend is the same, confirming the exis-
tence of a tradeoff between the speed of convergence and distorting
the target signal.

3.2.2. Average activation of nodes in clean and noise

To examine the effect of bias depression on the average activation
of nodes in clean and noisy conditions, we measured the mean ac-
tivation values of each node in different layers of the network and
compared these values under clean and noisy conditions. Fig. 4
shows the scatter plots for the four hidden layers with and without
bias depression (shown in black and red, respectively). This figure
demonstrates an increasingly similar average activation throughout
the network in subsequent hidden layers, which almost normalizes
the mean distortions caused by the noise (correlation value with and
without depression are shown on top of each plot in Fig. 4). This
in effect shows an effective role for bias depression in maintaining
a consistent activation that is able to minimize the effect of back-
ground noise on speech features, an effect similar to what we ob-
served in the response of biological neurons to speech in noise [10].

3.2.3. Effect of Synaptic Depression in different noise types and
SNRs

Phoneme classification accuracies for various noise types and signal-
to-noise ratios are shown in Table 1. The accuracy of the networks

Layer with depression Accuracy

All layers 26.06%
HL 1 24.66%
HL 2 22.71%
HL 3 22.16%
HL 4 20.53%

Table 2. Classification accuracy in DNN with bias depression ap-
plied to different layers

with and without depression are separated in each column, and the
depression parameter 1

τ
is fixed at 0.005, determined by the analysis

in 3.
As shown in the table, applying synaptic depression has a min-

imal effect on the accuracy of the network in the clean condition
(∼ 2% reduction). However, when the network is tested in noisy
conditions not included in the training, adding the bias depression
significantly improves the accuracy. This increased performance
is particularly significant for noises that are more stationary with
slower temporal dynamics compare to speech. The average gain for
different noise types and SNRs are also shown in the last row and
column of the table.

4. DISCUSSION

This study shows the feasibility and usefulness of integrating novel
bio-inspired mechanisms, specifically synaptic depression, into the
current neural network models used for acoustic modeling. We used
both qualitative and quantitative methods to describe the effective
computation of synaptic depression and how it increases the gen-
eralization of the network to unseen conditions. As shown in the
example in Fig. 2, incorporating this mechanism in the superficial
layers of a network can simply result in adaptation to changing in-
put variations (e.g., baseline change, or channel gain). However,
the operation is more convoluted when synaptic depression is added
to nodes in deeper layers of a neural network. For example, we
have recently shown that the nodes in a DNN trained for phoneme
recognition become increasingly more selective to distinct phonetic
features of speakers [21]. Therefore, a change in the gain or bias
at a deep layer may represent a high-level distortion in the acoustic
domain (e.g. the presence of a competing speaker [22]). The par-
allel efforts in understanding the computational principles of DNNs
will be very beneficial in learning more about how the changes in
neuron models or network architecture impact the behavior of the
network. The future directions of this work include a more realistic
benchmark and integration of this mechanism in the state-of-the-art
neural network models, as well as exploring whether or not training
the depression parameters jointly with the network will benefit the
phoneme accuracy.
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