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ABSTRACT
This paper compares unsupervised sequence training tech-
niques for deep neural networks (DNN) for broadcast tran-
scriptions. Recent progress in digital archiving of broadcast
content has made it easier to access large amounts of speech
data. Such archived data will be helpful for acoustic/language
modeling in live-broadcast captioning based on automatic
speech recognition (ASR). In Japanese broadcasts, however,
archived programs, e.g., sports news, do not always have
closed-captions used typically as references. Thus, unsu-
pervised adaptation techniques are needed for performance
improvements even when a DNN is used as an acoustic
model. In this paper, we compared three unsupervised se-
quence adaptation techniques: maximum a posteriori (MAP),
entropy minimization, and Bayes risk minimization. Experi-
mental results for transcribing sports news programs showed
that the best ASR performance is brought about by Bayes
risk minimization which reflects information as to expected
errors, while comparable results are obtained with MAP, the
simplest way of unsupervised sequence adaptation.

Index Terms— acoustic modeling, deep neural network,
unsupervised adaptation, Bayes risk minimization, deep de-
noising autoencoder

1. INTRODUCTION

NHK (Japan Broadcasting Corp.) has studied closed-captioning
for automatic-speech-recognition (ASR) to resolve acces-
sibility issues for hard-of-hearing persons and launched a
closed-captioning system for live news shows in 2012 [1, 2].
While the system achieves high ASR performance when
decoding read and clean speech, its accuracy drastically de-
teriorates under low-SNR/conversational speech conditions.
Thus, a large amount of training data is required for perfor-
mance improvements to be made.

On the other hand, many broadcasters have been making
available digital archives. Naturally, these archives offer use-
ful sets of training data for ASR as well as collections of in-
formation for public use. However, there are difficulties in
utilizing the information in the archives. First, in Japanese

broadcasts, programs do not always have closed-captions that
reflect their content. Since there is no information as to the
content, i.e., speech, except for the program name and genre,
transcriptions must be obtained without clues. In addition,
background sounds such as noise and music make it more
difficult to acquire accurate transcriptions. Thus, denoising
may be required to get useful information from program au-
dio streams. As an example of such conditions, we can point
to sports news programs that do not have any closed-captions
and where background noise exists behind the announcers’
speech.

As for the challenges accompanying acoustic modeling,
recent progress in the study of deep neural networks (DNN)
has shown that DNN-based acoustic models outperform con-
ventional Gaussian mixture models (GMM). Moreover, the
deep denoising autoencoder (DDA), which is represented as
a DNN regression model, performs well under low SNR con-
ditions [3, 4]. Neural-network-based approaches would be
expected to achieve a considerable increase in ASR perfor-
mance, and ones such as semi-supervised training for DNN
would also boost performance [5]. In our case, however,
the model adaptation should be conducted in an unsuper-
vised manner due to the lack of closed-captions for the
semi-supervised training. In the literature, regular adapta-
tion approaches were proposed in [6, 7] for DNN acoustic
modeling. In a speaker adaptation manner, DNN adaptation
techniques have also been used [8, 9, 10, 11]. The mod-
els are adapted according to speaker information estimated
from a small amount of speech data in a fashion similar to
cMLLR/fMLLR.

Of the variety of approaches to unsupervised DNN adap-
tation, we decided to focus on unsupervised adaptation tech-
niques from the perspective of sequence training for DNN
[12, 13]. We compared three methods using training data on
the scale of tens of hours. a) maximum a posteriori (MAP), b)
entropy minimization, and c) Bayes risk minimization. MAP
is the simplest way of sequence adaptation and maximizes
the posteriors of 1-best sentence hypotheses. Entropy mini-
mization defines competition among the hypotheses as an en-
tropy and minimizes it. Bayes risk minimization is the most
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complex technique and minimizes the expected risk, which is
derived from the posteriors and edit distances. We explored
the efficacy of these techniques through experiments on tran-
scribing broadcast programs under noisy conditions.

2. UNSUPERVISED DNN ADAPTATION

This section describes the three ways of unsupervised se-
quence adaptation for DNN. Note that all the adaptation
techniques are assumed to use n-best lists as training data.

2.1. MAP Adaptation

Supposing that 1-best sentence hypotheses can be regarded
as reference labels, one of the simplest sequence adaptation
methods is MAP, which maximizes the posteriors or condi-
tional log-likelihoods. The training objective in batch mode
is defined as

Lpost(Λ) =
1

M

∑
m

log p(wm
0 |xm; Λ), (1)

where p(wm
0 |xm; Λ) is a posterior of the 1-best sentence hy-

pothesis, wm
0 , for the m-th acoustic feature vector, xm. Λ

is the set of parameters to be estimated in an unsupervised
manner.

The posterior is given by

p(w|x) =
1

Z(Λ)
exp

{
λlmflm(w) + λam

∑
t

fac(xt|st; Λ)

}
,

(2)
where flm(w) is the logarithmic language score for the sen-
tence hypothesis, w, and fam(xt|st; Λ) is the logarithmic
acoustic score for the t-th feature of xt. Z(Λ), a normaliza-
tion factor, i.e., the sum over the n-best hypotheses, is given
by

Z(Λ) =
∑
w

exp

{
λlmflm(w) + λam

∑
t

fac(xt|st; Λ)

}
.

Note that Z(Λ) reflects the competition among the hypothe-
ses, which is an essential factor for discriminative training.

When the DNN is utilized as an acoustic model, the
acoustic score is decomposed as

fac(x|s; Λ) = fdnn(s|x; Λ)− fprior(s), (3)

where fprior(s) is the logarithmic prior of the senone, s,
which is computed from the training data. fdnn(s|x; Λ) is
the output from the DNN, or the logarithmic posterior of
the senone, and it is typically activated by the softmax func-
tion. However, some decoders, e.g., Kaldi decoder, can use
outputs not through the softmax as acoustic scores for conve-
nience [14]. Then, we compute the gradients required for the

model parameter updates in a simple manner by removing the
softmax layer.

Abbreviating the posterior as pmn ≡ p(wm
n |xm; Λ) for

readability, the gradient w.r.t. the element, λ(`)ij ∈ Λ, of the
matrix connecting between the j-th and i-th units of the top
two layers is defined as

∆ij = pmn

{∑
t

(
δmn,t(j)−

∑
k

pmk δ
m
k,t(j)

)}
yi, (4)

where yi is the i-th input to the top layer and δmn,t(j) is a delta
function defined as

δmn,t(j) =

{
1 if smn,t mathces j-th senone,
0 otherwise.

(5)

According to Eq. (4), the propagation error for the j-th output
unit of the m-th training data can be derived as

εmj =
∑
t

(
δm0,t(j)−

∑
k

pmk δ
m
k,t(j)

)
. (6)

The propagation error leads to the conventional backpropaga-
tion via the stochastic gradient decent algorithm for the pa-
rameter update.

2.2. Entropy Minimization

In unsupervised training, a conditional entropy function is of-
ten defined as a regularizer to be minimized on the training
data [15, 16]. The training objective is defined as

Lent(Λ) = − 1

M

∑
m

∑
n

pmn log pmn . (7)

The entropy regularizer is designed under the assumption that
the uncertainty associated with hypothesis discrimination for
the unlabeled data should be reduced by the estimated model.
As the regularizer can be viewed as an expectation for the
scores (log-probabilities) of sentence hypotheses, minimizing
the objective is equivalent to making the scores of possibly
correct hypotheses larger and the scores of unpromising ones
smaller. Unlike the MAP approach, the competition among
the hypotheses appears explicitly in entropy minimization.

As with derivation of Eq.(4), the propagation error can be
formulated as

εmj = −
∑
n

∂pmn

∂λ
(`)
ij

(log pmn + 1)

= −
∑
n

pmn (log pmn + 1)

×

{∑
t

(
δmn,t(j)−

∑
k

pmk δ
m
k,t(j)

)}
. (8)

5861



2.3. Bayes Risk Minimization

The Bayes risk minimization approach is performed on n-best
lists in order to obtain hypotheses with minimum error prob-
abilities [17, 18]. Regarding it as inductive learning, we can
introduce a training objective, which reflects error informa-
tion, as follows:

Lrisk(Λ) =
1

M

∑
m

∑
n

pmn
∑
k

rn,kp
m
k , (9)

where rn,k is a cost defined as the distance (conventionally,
the Levenshtein distance) between the n-th sentence hypoth-
esis and the k-th one.

In a similar fashion, the propagation error can be derived
as

εmj =
∑
n

(
∂pmn

∂λ
(`)
ij

∑
k

rn,kp
m
k + pmn

∑
k

rn,k
∂pmk

∂λ
(`)
ij

)
=

∑
n

pmn
∑
k

(φn + φk) rn,kp
m
k , (10)

where, as a shorthand, φn is defined as

φn ≡
∑
t

(
δmn,t(j)−

∑
ν

pmν δ
m
ν,t(j)

)
. (11)

From the point of view of calculation amount, the latter
two approaches, Bayes risk minimization and entropy mini-
mization, are more complex than the MAP approach because
the round-robin competition among the sentence hypotheses
are required.

3. EXPERIMENTS

3.1. Setup

3.1.1. Evaluation

As listed in Table 1, we used sports news shows for test-
ing the ASR performance. The shows are characterized by
their topics, including sumo tournaments, professional base-
ball games, and domestic league soccer games. Moreover, the
speech is often against a background of music and noise, such
as opening/closing themes, jingles, and cheers in the stadium.
For the reference labels, the perplexity (PP) and out of vocab-
ulary (OOV) rate were measured using a baseline trigram LM.
The LM was trained from Japanese closed-captions (239M)
with a 200k vocabulary. For the evaluation, we used a deep
denoising autoencoder (DDA) for front-end feature process-
ing followed by a DNN-HMM hybrid decoder based on the
Kaldi toolkit [14].

3.1.2. Training and Adaptation

Fig. 1 shows our adaptation scheme. First, the training data
were decoded by using a baseline trigram language model

Table 1. Evaluation data

#utts #words PP PP(adpt) OOV(%)
1374 12.2k 120.7 80.7 0.6

Denoise
Unsup.

adaptation

Adaption
data

Unsup.
adaptation

Decode

Baseline
DNN

Baseline
LM

Posterior-filtered
1-best results

200-best
results

Adapted LM

Adapted DNNDenoising
Autoendoder

Fig. 1. Diagram of unsupervised sequence adaptation

(LM) and a DNN-based acoustic model (AM) to obtain the
transcriptions. Then, the baseline LM was interpolated with
the model estimated from the transcriptions for the adapted
LM. The n-best lists were obtained through decoding with the
adapted LM. Finally, unsupervised sequence adaptation was
conducted on the n-best lists.

The DDA was trained as a front-end from 480 hours of
broadcast programs mixed with 116.2 hours of noise and mu-
sic data while changing the SNR from -5 dB to 20 dB. We
utilized 40-dimensional log-mel-filterbank with log-energy as
an acoustic feature and configured 15-frame splicing features
as inputs to the DDA. The DDA network consisted of three
hidden layers with 1024 units each and was constructed in
a conventional manner, specifically, pre-training followed by
fine-tuning.

We used an eight-hidden-layer deep neural network
(DNN) for the acoustic modeling. 11-frame splicing fea-
tures were fed as inputs into the network, and the posteriors
of 7000 units were output. Each hidden layer had 2048 units
activated by sigmoid functions. The DNN was trained from
1000 hours of speech from broadcast programs in the way
of pre-training and fine-tuning and utilized as baseline for
adaptation.

For unsupervised sequence adaptation, we utilized 73.4
hours of speech data from similar sports news programs as
the adaptation data (Table 2). The n-best lists for adaptation
were obtained by decoding with the adapted trigram LM and
the baseline DNN. Then, according to Eqs. 6,8 and 10, all the
DNN parameters including affine transforms and biases were
fully updated and adapted by the conventional backpropaga-
tion. In addition, for the detailed analysis, we prepared the
subsets of training data by thresholding on the basis of 1-best
sentence posteriors.
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Table 2. Training data for unsupervised sequence adaptation

threshold hours #segments #words
0.0(all) 73.4 75.9k 78.7k

0.1 47.5 53.5k 50.9k
0.3 29.7 35.6k 31.5k
0.5 19.8 24.6k 21.0k
0.7 12.9 16.6k 13.6k
0.9 7.0 9.6k 7.3k

Table 3. Overall results (%)

WER(%) ERR(%)
Baseline 49.1 -
+DDA 31.8 35.2

+Adpt. LM 29.3 7.9

+Adpt. AM
MAP 28.5 2.7

MinEnt 28.5 2.7
MBR 28.4 3.1

3.2. Experimental Results

Table 4 shows the word error rates (WERs) and relative er-
ror reduction rates (ERRs) for the evaluation data. The Base-
line result was obtained from the baseline trigram LM and the
DNN without using the DDA front-end processing. MAP,
MinEnt and MBR denote the results from the DNNs esti-
mated by using MAP, entropy minimization and Bayes risk
minimization, respectively. As shown in the table, the effect
of DDA appeared to be extremely large, and it produced a rel-
ative reduction of 35.2 % compared with the Baseline result.
The results from the adapted LM also reduced WER by 7.9 %
against the DDA result. Clearly, this is because the transcrip-
tions of the training data matched the evaluation data in terms
of topic.

Compared with these improvements, the gains from un-
supervised sequence adaptation methods remained modest,
with error reductions of around 3 % absolute to the adapted
LM result. Among the three unsupervised approaches, MBR
achieved the best WER of 28.4 % and reduced WER by 42.2
% compared with the Baseline. Although matched-pair test-
ing [19] showed that there are no significant differences be-
tween MBR and the others, Bayes risk minimization would
probably lead to the best performance when it is trained from
a larger amount of data as we reported in discriminative lan-
guage modeling [20].

We further explored the efficacy of the unsupervised
sequence adaptation methods from the perspective of data
amount. Table 5 shows the results from the DNNs estimated
while changing the subsets of training data. As the amount
of data increased by reducing the threshold posteriors, the
WERs of the training methods steadily improved. Regardless
of the adaptation method, the DNNs trained from the same

Table 4. Detailed results (subsets, %)

threshold MAP MinEnt MBR
0.0(all) 28.5 28.5 28.4

0.1 28.5 28.6 28.4
0.3 28.6 28.5 28.5
0.5 28.8 28.5 28.6
0.7 28.8 28.7 28.8
0.9 28.9 28.8 28.9

Table 5. Detailed results (speakers, %)

Anchors Others
WER ERR WER ERR

Baseline 42.3 - 87.3 -
+DDA 24.5 42.1 72.9 16.5

+Adpt. LM 21.8 11.0 71.5 1.9

+Adpt. AM
MAP 21.0 3.8 70.8 1.0

MinEnt 21.0 3.8 70.8 1.0
MBR 20.9 4.1 70.8 1.0

amount of data achieved similar WERs. The adaptation meth-
ods did not cause any differences in performance when the
DNNs were adapted by matched-conditioned training data.

Finally, Table 6 shows the results for the different kinds
of speaker. The evaluation data can be classified into two
speaker types: Anchors (10.8k words) and Others (1.8k
words). The Anchors subset includes commentary in the
studio and field, while Others consists of utterances by play-
ers in stadiums, on baseball fields, and soccer pitches. As
is clear from the table, fewer word errors were reduced in
the results for Others than in those for Anchors, even when
DDA and the adapted LM were used. Moreover, the unsu-
pervised DNN adaptation yielded only small gains. Such
poor performance could have been caused by the degraded
speech in Others that was recorded with much reverberation
in addition to background noise. Naturally, as the quality of
transcriptions obtained from such difficult conditions is low,
using DNN adaptation on them would probably be inefficient
and insufficient.

4. CONCLUSION

We explored the sequence model adaptation approaches of
DNNs in an unsupervised manner. The experimental results
showed that the Bayes risk minimization method performed
the best, while the MAP approach achieved comparable re-
sults. However, a further experimental study would be re-
quired for comparison among the adaptation methods because
the results were preliminarily obtained by a small amount of
training data and small n-best lists. Moreover, we will explore
lattice-based approaches to achieve further WER reductions.
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