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ABSTRACT Data-driven training also often ignores or contradictsind

. . - incr];s of research on human speech production and percep-
Recent advances in automatic speech recognition have usgd Speech is generated by the relatively slow, conschin

large corpora and powerful computational resources to trai . .
e X . . and smooth movement of a small number of articulators in
complex statistical models from high-dimensional feasyte .
the vocal tract. Features are therefore strongly corrtlizte

attempt to capture all the variability found in natural sgiee ime and typically exhibit smooth, slowly-varying dynamic
Such models are difficult to interpret and may be fragile, ant%t has long been argued [10, 11] that speech features thus

S ; . is through dimensionality reducing transforms applied t
parameters and which is more faithful to the dynamics an . : :
: . input features (e.g. [12]), and non-linear reductiarchs
model of human speech production. Using features generaté¢ . . .
. ... as relatively low-dimension bottleneck layers [13].
from a neural network bottleneck layer, we obtain recogniti Jansen [11] argues that modelling this manifold direct
accuracy on TIMIT which compares favourably with tradi- 9 9 y

tional models of similar power. We discuss the implicationsWOLIId allow recognition to be carried out closer to the orai

. : Intent, perhaps therefore more robustly to noise and viiriab
of these results for recognition using natural featureb sisc . . .
. ity. It would also allow the dynamics of the signal to be taken
vocal tract resonances and spectral energies.

into account. Segmental [14, 15] and dynamical [16, 17]
Index Terms— Continuous-State HMM, phoneme recog- models attempt to model the dynamics of speech more faith-

recognition using a model of speech which employs very fev%:

nition, neural network, bottleneck features, formants. fully, but have been hampered by computational complexity.
The Continuous State HMM (CS-HMM) [18] can be cast
1. INTRODUCTION as a type of segmental model [19]. Its iterative computation

avoid some of these problems, and it can be trained on lim-
Recent significant progress in automatic speech recognitidted data of low dimensionality. Variants have been appited
has been achieved predominantly using statistical method®iced sounds [20] with formant-type features, and unwbice
such as Deep Neural Networks (DNNs) [1] to model distribu-Sounds [21] using spectral energy features.
tions over speech features. Very large corpora and powerful We plan to integrate these models into a full recogniser
computational resources (e.g. [2]) enable training of n®de which would probabilistically combine hypotheses from mul
with many parameters, from rich high-dimensional features tiple models and heterogeneous views on the data (see e.g.
This approach assumes training and test data drawn frof§2])- Questions remain, including how to automatically
the same distribution, and aims to model all the expecteid varchoose appropriate features for each observation, and com-
ability in speech from the target domain, to reduce the risiine scores from different feature spaces. As an internedia
of encountering novel patterns in production. With enougtftep, in this paper we side-step these questions by build-
training data, although the model is over-trained, the empi iNg on work reported in [23] to automatically derive a low-
ical distributions of training and test samples will be elos dimensional representation of speech, valid for all speech
enough for lack of generalisation not to be a problem. sounds (as hypothesised by Jansen et al. [11]), and faithful
The cost can be inflexibility when applied to speech fromt© the assumptions of the CS-HMM. We report promising
outside the target domain. This is demonstrated by the fa@honeme recognition results using these bottleneck fesitur
that research is active into recognition of accented (8], [
children’s [4] or dysarthric [5] speech, as well as trainfog 2. CONTINUOQUS-STATE HMM
low resource languages (e.g. [6, 7]), speech in noise [&], an
model adaptation [9]. Adaptation is hampered by difficulty The CS-HMM model of speech [18, 20] aims to reflect speech
in interpreting large statistical models, the structuessihed, structure and dynamics more faithfully than conventional
and roles and behaviours of elements of the models. HMMs, reducing the assumptions that speech is a piece-wise
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stationary process with temporally independent obsemati sequence of phonemes for the utterance. The most likely hy-

and improving duration modelling. The model is inspiredpothesis returned will include a first estimate of boundarie

by the Holmes, Mattingly and Shearme (HMS) [24] dwell- between dwells and transitions. From these improved bound-

transition model of speech, in which stationary dwells eepr aries, an improved set of phoneme targgtsand realisation

sent phoneme targets and transitions the smooth movemertvarianceA can be estimated from the features now marked

between them, corresponding to the smooth movement of thees dwell phases. Observation covariaiide estimated from

human articulators. GiveiV phonemes, we estimate an in- both dwells and transitions. Decoding is then repeated with

ventory of phoneme ‘canonical’ targets. L&t be the target the new inventory, until convergence (boundaries and param

feature vector for phoneme. Realisatiorr,, of ¢ will vary,  eter estimates no longer change).

e.g. with speaker and context. We assume this variation to be

Gaussian around the target, with covariadceWe assume 3. FEATURES

also observatiory, at timet to be drawn from a Gaussian

aroundr,, with covarianceE. In this work, A andE are |n this section we briefly outline the derivation of bottleke

global, but they could be estimated per-phoneme. Thus  features and describe other features used in the expesment
ro ~ N(By, A), Y~ N(rp, B). (1) 31 Low-Dimensional Bottleneck Features (BNs)

The trained system contains a moéglper phoneme, two  \We obtain bottleneck features using a neural network clas-
covariances\ andE, and a timing model, which in this work  sifier as described by Bai et al. [23]. Log Mel-frequency fil-
simply allows uniformly distributed dwell and transitiond  terbanks (26 channels) were obtained from TIMIT audio sam-
rations over a specified range. These at most several hundrggbd at 16kHz, analysed using a 25ms Hamming window with
parameters (see Tables 1 and 2), are estimated from data Bms frame rate, normalised to zero mean and unit variance
described in the next section, as is a language model. over the training set. Windows dfl features (centrat 5

Recognition uses a sequential branching algorithm to reframes) were input to a 5-layer multi-layer perceptronmgyi
cover the most likely sequence of alternating dwells anttra 3 286 neuron input layer. Hidden layers contained sigmoid-
sitions, the times of changes between them, and the sequeng&ivation neurons;12 in layers2 and4, with a3 or 9 neu-
of phonemes which generated them. Hypotheses are maifpn bottleneck in laye8. Using the Theano toolkit [26], the
tained for all possible trajectories, pruning the leagtlifior  network was trained discriminatively using Stochasticdbra
computational efficiency. Each hypothesis maintains d€5ta ent Descent with the cross-entropy error criterion, to joted
consisting of continuous componentsand discrete compo- phoneme posterior probabilities from the ‘standard’ 4%det

nentsd;, maintained as a Baum-Welch alpha value, TIMIT phonemes [27]. Training was halted at the soonest of
increasing validation set error, or at 3000 epochs. We used
o, d) = Kin(x — py, Py), (2)  90% of the TIMIT Train set for training, 10% for validation.

. . . L . We generated bottleneck features for the whole of TIMIT
which stores information abou_t an infinite set of explar_mmo by feeding the same input features to the trained network, an
of the data, as a scaled Gaussian. It represents the hymthe%cording the activations at the bottleneck layer. Se |

bhehef of thehcurret? t r.e alcljsatkllon, given tge ﬁ bseryaﬁqmsns of bottleneck features were obtained from networks with the
the cyrrent ypothesised phoneme .a.n phonetic history, a ove structure trained from different random initialisas.
duration of the current dwell or transition.

On each observation, hypotheses are split to account f%r2 F ¢ d Vocal Tract R VTR
the possibilities of continuing in the current dwell or tran ~“ ormants and Vocal Tract Resonances ( s)

sition, or changing from dwell to transition or vice versa. AThe HMS model was originally described in terms of for-

distinguishing feature of the dwell-transition CS-HMMH&t  mants, the resonances of the human vocal tract as mainly ob-

continuity is preserved across the segment boundaries.  served during sonorant speech. We use Wavesurfer [28] to
obtain trajectories fofy, F» and F3 from TIMIT. Formants

2.1. Training Procedure are notoriously hard to estimate accurately, and not meganin
ful for all speech sounds [23, Fig. 4b)], while the undertyin

To estimate parameters we use a Viterbi-like alignment proysca| Tract Resonances (VTRs) manifesting as formants dur-

cedure [20]. Initial estimates are obtained using the TIMITing sonorant speech are postulated as valid for all spedwh. T

[25] transcribed phoneme boundaries, to identify which feay/ TR gatabase [29] provides VTRs for a subset of TIMIT.
tures belong to which phoneme. This assumes that dwells

extend between these boundaries and there are no trassitio
We use all ‘non-SA utterances from the TIMIT Train set for
training. Each utterance is then decoded with the CS-HMMPerceptual experiments have shown that humans discrieninat

decoding algorithm using a strict language model, the trubetween unvoiced sounds largely on the basis of broadband

3. Perceptually-Motivated Spectral Features
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Features Phonemes Dim. Train Test Model Corr  Sub Del Ins Err  Ac #Parm

39 MFCC +6 + 46 [23] all 39  Train Core Test DS-HMM  76.2 - - - 291 709 1.4e7
9D Bottleneck [23] all 9 Train Core Test DS-HMM 744 17.8 88 .92 294 706 2.3e5
3D Bottleneck [23] all 3 Train Core Test DS-HMM  65.0 242 10.84.1 391 609 7.6e4
3 Formant [23] all 3 Train Core Test DS-HMM  49.3 32.0 187 8.69.35 40.7 7.6e4

3 Formant + + 66 [23] all 9 Train Core Test DS-HMM  56.3 24.3 19.3 5.2 489 51.1 .3eB

3 VTR [20] voiced (v) 3 1 Speaker 1 Speaker CS-HMM  39.6 31.1 329. 24 628 37.2 85

9 Spectral Energies [21] unvoiced (uv) 9 Train Core Test Q@MH 73.1 195 8.2 3.2 308 69.2 245

Table 1. Phone % error (etc.) from previous phoneme recognitioreexgents. Top: ‘standard’ discrete tied-state triphone MH@MM
(DS-HMM) (approximatelyl 1, 000 HMMs); 13 MFCCs plus deltas and delta-deltas. Centre: monophone BBtebmparing formants and
bottleneck features. Bottom: CS-HMM, training and testingv) voiced phoneme sequences from a single-speakemnfue)ced phoneme
sequences. All results use a bigram language model. Paacweint #Parm is for the model only, excludes LM and featuteaetion.

energy between specific frequencies and of specific duratiod.2. Bottleneck Results
Between such sounds, acoustic change is abrupt, so the HMS )
model is not a good fit. Instead, vectors of spectral energid the lower half of Table 2 we report phoneme recogni-

between perceptually-motivated frequencies can be ugéd Witlﬁn results fg; ful TI:VI”;, utt'(cajrances. (labelled ‘a:l’), wed d iced
a ‘dwell-only’ model to decode unvoiced consonants [21]. phoneémes ( VOWEIS, IquIds, f‘is;,plrates, hasals and voice
fricatives and affricates, labelled ‘v’) and unvoiced pkores

(17 stops, closures and unvoiced fricatives and affricates
4. RESULTS labelled ‘uv’). Models were built for the appropriate subse
. . ) . ) from the ‘standard’ mapping to 49 phonemes, and scored
In this section we briefly review previous phoneme recogy,qing the mapping to 40 [27]. The results reported are means
nition results using bottlgngck features with d_|scretﬁest from repeated experiments using BNs from neural networks
HMMs (DS-HMMs), and limited experiments using the CS-y»ineq from different random initialisations. The top part of
HMM with ‘natural’ features (VTRs and spectral features). e tap|e gives results for formants and VTRs for compatison
Accuracy using BNs with the CS-HMM was not quite as
4.1. Previous Results good as with the DS-HMM (Table 1) but the CS-HMM used

several orders of magnitude fewer parameters. The BNs per-

Using 9-dimensional bottleneck (9D BN) features, and - L
‘standard’ discrete-state HMM system implemented in HTKaform S|gn|f|cantly better than formants and \./T.RS (in either
odel), suggesting that they successfully eliminate mudch o

[30], phone accuracy was achieved almost equivalent to th ) e ;

obtained with MFCCs (Table 1, lines 1 and 2) [23]. ACCUracy%l\e/l\I\I/Ianr?;(;lIt?{alennth?]z?)If:?éur::?];\llzlcget:teoisz{T,\a/lrl:/(lj (‘;r(')d DS-

with the BNs was considerably better than with equivalent- C) ious| u BNS %E (h' hl f T (5 . d

dimension estimated formants (lines 3-5). Visualisatsug- uriously, using IS “oErT was higher for voiced sounds
Iﬂan for full utterances. It is possible that features gateer

gested that the BNs preserved the time dynamics of spee% . .
y the neural network are less consistent for voiced sounds

well, better and more consistently than formants, and shoul ) . -
y than for unvoiced. We hypothesise that this is an effectef th

therefore be suitable for recognition with the CS-HMM. Very . . .
little improvement was seen with higher-dimension BNs. network training procedure (to predict phoneme posteyiors

Using a CS-HMM with VTRs, Houghton et al. [20] implicitly assuming a ‘dwell-only’ model (features statio

trained and tested on sequences of voiced sounds only, foryY throughouta phonemej) rather than dwell-transitioris Th

single TIMIT speaker. The results showed the ability of theCould also explain the lower error for unvoiced phonemes,

training algorithm to learn from small amounts of training V\{hOSQ features are more stationary [2.1] (although this may
data, but the best phone accuracy was g%, using3 S|mp!y be due to fevyer classes of unvoiced phonemes).
VTRs and a bigram language model (Table 1, line 6). Extend- Finally, for unvoiced sounds, BNs performed t_Jetter than
ing to multiple speakers (Table 2, lines 4-6), errors inseea spect_ral feature_s, perhap; because no forced alignment was
significantly, suggesting that the model at present canniot aused in the previous experiments [21] using spectral featur
count well for the variability in the VTR trajectories. The
problem is even worse for formants (Table 2, lines 1-3). 5. DISCUSSION AND FUTURE WORK

Using perceptually-motivated spectral energies, Weber et
al. [21] obtained;9.2% phone accuracy on sequences of un-The BN results are encouraging in showing for the first time
voiced TIMIT phonemes, trained and tested on the full TIMIT that speech recognition using a CS-HMM ‘segmental’ model
Train and Core Test. This is considerably better than obthin is possible given appropriate features. With 9D features,
for voiced sounds with VTRs and suggests that these featur&8.1% error is not too dissimilar from the baseline MFCC
are much less sensitive to variability between speakers. result, while using significantly fewer parameters. The
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Features #Phn Corr Sub Del Ins  Err (S/E) #Parm 1.0

3 Formant  all 311 35.6 33.4 4.8 737 163 ¥ os| = =
3 Formant v 204 312484 16 812 112 § 1o}
3 Formant uv 31.9 332349 4.2 723 67 & .|
3VIR  all 29.2 36.2 346 3.7 746 163 = —_— -
3VIR v 29.2 37.0 338 3.3 742 112 7 *° _
3VIR  uwv 322 334344 25 703 67 % osp = -
3DBN  all 557 30.114.2 3.6 47.9(0.07) 163 3000  — SXT Uwy —WersT syaxeranixverdow mren
3DBN v 525 293182 34 509(0.09) 112 __ . |~ e B .
3DBN  uv 719 17.4 10.7 23 30.4(0.01) 67 &

2000 |-
9DBN all 66.9 229102 50 381(0.11) 535 gmo r N— T - ot

9D BN v 60.9 24.6 145 3.9 43.0(0.01) 382 ¢ - —
9D BN uv 82.8 109 6.3 4.2 21.3(0.25) 247 1000¢
500 [

Table 2. CS-HMM phone recognition results, with formants [28] 0 Y —Th—aF— ey e ARV e
and VTRs [29] (top section) and bottleneck features (lowetisns). 3500¢F
The bottleneck results given are means over featuresmetwork ~ E2°°° | — -

<2500 = -
22000}
%‘_1500
CS-HMM used just35 trainable parameters (per-phoneme® g
canonical targets, global realisation and observatiomiGgov 0 axfusyih_erzley du erdh Tk veld owom
ance matrices, and four parameters for a timing model), plus

a bigram language modeX@01 parameters). Minimum er- Fig. 1. Example CS-HMM recoveries (thick blue lines), showing
ror was reached afte2 to 5 iterations of forced alignment, realised dwells (red), inventory feature means (greenpmFiop:
after which it began to increase, suggesting that the trgini 3D BNs (magentaf [0, 1], offset to visualise), VTRs, formants.
algorithm is not yet optimal. With such improvements, and ) ) _

perhaps an improved timing model and some per-phonenfd? accuratglnventory. Th(_a differencein performance_ betwe
parameters, we expect to somewhat reduce the error rate. BNS for voiced and unvoiced sounds suggests an important

These resuls are however somehow disappoining b SRRl 1 SRPAC L SR S RN S SR
cause the same problem of lack of interpretability affects o 9 ' y

neural network-derived features, as affects recognigsnlis ;t:erg.r];g[[riﬂly, f;c;trjgicefoﬁrei(;crﬁulnet Lor sﬁgsv?}eti’;;%(:v;ﬂ
from DNNs. Our aim is speech recognition using models 9 9 ! pie by 9

. . . %enerator once trained, can be applied in multiple settings
and features interpretable in terms of human production an Since the CS-HMM requires manv fewer parameters. w
perception. The CS-HMM fulfils this in part; the BNs at ce the equires many TEWer parameters, we

present do not — but they outperformed ‘natural’ features irl%usg-rllltl\ilcl)\/lbil?grlietg\/télalnir:JcSrlggsli?] Ssts:taatrg?:eré?zgﬁgtﬁr;he
every case. In addition, we ignored parameters involved i ' Y Y P

generating features, approximatel$0, 000 in the case of informed ‘way '(e.g. tf). en,code known varie}nts of phonemes,
the 9D BNs (although these are only required for training th(—:$UCh as dark’ and “light’ /I/s) may allow |mprovement n
feature generator, not to train or test the recogniser). _recogr_utlon accuracy. One adva_ntagg of th? CS-HMM is that
) it provides a natural framework in which to incorporate such
Why do the BNs perform well? Figure 1 shows that thee centyal knowledge [21]. We plan therefore to investigat

CS-HMM tends to fit the data well, but for the VTR and for- yq\, 5\,ch knowledge is represented in the BN, and the effects
mants the inventory frequencies (green lines) are oftep very oo gnition error rates of incorporating such knowledge
similar and bear little relation to the features. The phoaem

inventory learned for BNs is more discriminatory and a brette 6. CONCLUSION
fit to the data, suggesting some of the variation not needed

for discriminating between speech sounds has been excludgge reported, for the first time, TIMIT phoneme recognition
from the BNs. The formant features are also seen, as e¥esults using a CS-HMM — a model of speech more faithful
pected, to be noisy during unvoiced sounds, but the CS-HMMo human speech production — using low dimensional ‘bottle-
has tried erroneously to fit short phonemes in these regionsneck’ features, which apparenﬂy somehow capture the true
Future work is planned in several directions. Firstly, todynamics of speech. We avoided the question of whether
improve the ability of the CS-HMM to account for the vari- these features can be interpreted in terms of human speech
ability in ‘natural’ features, e.g. using Vocal Tract Lehgt production and perception. Future work will therefore fecu
Normalisation techniques (which can in theory be accommoen understanding the derived representations, and onmecog
dated simply within the model). Secondly, to understand antgion with the CS-HMM using perceptually-motivated feature
improve the BNs. Previous work [20] has shown criticality of such as vocal tract resonances and spectral energies.

random initialisations, giving the standard error of theaméS/E).
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