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ABSTRACT

Mismatched transcriptions of speech in a target language refers to
transcriptions provided by people unfamiliar with the language, us-
ing English letter sequences. In this work, we demonstrate the value
of such transcriptions in building an ASR system for the target lan-
guage. For different languages, we use less than an hour of mis-
matched transcriptions to successfully adapt baseline multilingual
models built with no access to native transcriptions in the target lan-
guage. The adapted models provide up to 25% relative improvement
in phone error rates on an unseen evaluation set.

Index Terms— mismatched transcriptions, ASR adaptation,
ASR for under-resourced languages

1. INTRODUCTION

Speech and language technologies are unavailable to a large major-
ity of the world’s languages. Most languages are under-resourced in
terms of the technological resources needed to build speech recogni-
tion systems (see [1] for a detailed survey on speech processing for
under-resourced languages). A first step towards building an ASR
system for a new language typically involves collecting sufficient
amounts of transcribed speech data. Crowdsourcing has been ex-
plored as an innovative way in which transcriptions for speech data
are solicited from large numbers of crowd workers who are native
speakers of the language [2, 3]. This technique, however, would
be constrained to languages for which it is possible to find native
speakers online. To circumvent the need for native transcribers in a
language, mismatched crowdsourcing has been introduced as a tech-
nique [4, 5] that makes use of transcriptions in the form of English
syllables from crowd workers unfamiliar with the target language
(henceforth referred to as “mismatched transcriptions”).

Mismatched transcriptions have been demonstrated to produce
reasonably accurate transcriptions in both isolated word and contin-
uous speech tasks. Using mismatched transcriptions, isolated Hindi
words from a medium vocabulary task were recovered with a 1-best
accuracy of over 85% [4] and transcriptions for short continuous
speech segments in Hindi were labeled with an accuracy of over 55%
on a large vocabulary task. A logical question that follows is: what is
the impact of mismatched transcriptions on ASR performance? This
is the main question that is tackled in this work.

There has been a lot of prior work on building speech technolo-
gies for under-resourced languages using multilingual models from
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high-resource languages and applying unsupervised adaptation tech-
niques (e.g. [6] for Polish, [7] for Vietnamese and [8] for Czech).
Our work is the first attempt to explore the use of mismatched tran-
scriptions as adaptation data with multilingual models. We also
demonstrate significant performance improvements from using mis-
matched transcriptions beyond that obtained from adaptation with
untranscribed speech data in the target language.

2. PROBLEM SETUP

Our goal is to train a phone recognition system for a given target
language in which no native transcriptions are available. We assume
that we have access to unspoken texts and to untranscribed audio
in the target language, but not to transcribed audio. Baseline multi-
lingual systems are trained using native transcriptions from several
different languages (not including the target language). Section 4 de-
tails multilingual GMM-HMM and DNN-based ASR systems with
language-specific grammar models and Section 5 describes a semi-
supervised baseline that uses unlabeled data from the target lan-
guage. Next, we adapt the parameters of the acoustic model of the
above system using only probabilistic phone transcriptions in the tar-
get language derived from mismatched transcriptions. The construc-
tion of probabilistic phone transcriptions is described in Section 3
and the acoustic model adaptation is detailed in Section 6.

2.1. Task Details

Our speech data were extracted from publicly available Special
Broadcasting Service Australia (SBS) radio podcasts [9] hosted
in 68 different languages. We restricted our experiments to seven
of these languages for which we could find a native transcriber
willing to provide orthographic transcriptions for roughly 1 hour
of speech: Arabic (AR), Cantonese (CA), Dutch (DT), Hungarian
(HG), Mandarin (MD), Swahili (SW) and Urdu (UR).1

The SBS radio podcasts are not entirely homogeneous in the
target language and contain utterances interspersed with segments
of music and English. A simple GMM-based language identification
system was developed as a first pass over the podcasts in order to
isolate regions that correspond mostly to the target language. These
long segments were then split into smaller ≈ 5-second segments.
This was to enable easy labeling by the native transcribers, and more

1CA transcriptions were provided by Nancy Chen at I2R in Singapore,
as part of a collaborative research project. The native transcribers for the
other six languages were paid student volunteers at the University of Illinois
at Urbana-Champaign.
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Language Code Dev set (1-best) Eval set (1-best)
AR 65.8 66.2
CA 66.4 67.8
DT 68.9 70.9
HG 63.7 63.5
MD 70.9 69.6
SW 47.6 50.3
UR 67.2 70.5

Table 1. 1-best probabilistic phone transcription error rates on the
development and evaluation sets.

importantly to allow for the collection of mismatched transcrip-
tions that required the speech segments to be short (see below for
more details). To further check that only speech clips in the target
language were retained, the native transcribers were asked to omit
any 5-sec clips that contained music, significant amounts of noise,
English speech or speech from multiple speakers. The resulting
transcribed speech clips roughly amounted to 45 minutes of speech
in Urdu and 1 hour of speech in the remaining seven languages. The
orthographic transcriptions for these clips were then converted into
phonemic transcriptions using language-specific dictionaries and
grapheme-to-phoneme mappings (these resources are detailed in
Section 4). For each language, we chose a random 40/10/10 minutes
split into training, development and evaluation sets.

Mismatched transcriptions. Mismatched transcriptions were col-
lected from crowd workers (Turkers) on Amazon Mechanical Turk
(MTurk) [10]. The 5-sec speech segments described above were fur-
ther split into 4 non-overlapping segments; shorter segments made
the listening task easier for the Turkers. The crowdsourcing task
was set up as described in [5]. The Turkers were asked to listen to
speech segments in a language they were unfamiliar with and write
down English text (typically in the form of nonsense syllables) clos-
est to what they think they heard. Each speech segment was tran-
scribed by 10 distinct Turkers. More than 2500 Turkers participated
in these tasks, with roughly 30% of them claiming to know only En-
glish. (Spanish, French, German, Japanese, Chinese were some of
the other languages listed by the Turkers.)

3. PROBABILISTIC TRANSCRIPTIONS

Our goal in this section is to compute a distribution over phone se-
quences π in the target language (referred to as probabilistic tran-
scripts or PTs), given a set of mismatched transcripts, T . As an
intermediate step towards this goal, prior work [5] has developed
techniques to merge the transcripts in T into a distribution Pr(λ|T )
over “representative transcripts” denoted by λ. Then, we write:

Pr(π|T ) =
∑
λ

Pr(π, λ|T ) =
∑
λ

Pr(π|λ, T ) Pr(λ|T )

≈ max
λ

Pr(π|λ) Pr(λ|T )

= max
λ

(
Pr(λ|π)

Pr(λ)
Pr(π)

)
Pr(λ|T ) (1)

The terms other than Pr(λ|T ) in Equation 1 are estimated as follows.
• Pr(λ) is modeled using a simple context-free prior over the

letter sequences in λ.
• Pr(π) is modeled using a bigram phone language model,

trained on a corpus of Wikipedia text in the target language, con-
verted into phone sequences as described in Section 4.
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Fig. 1. Phone error rates plotted against entropy rate estimates of
phone sequences in three different languages.

• Pr(λ|π) is trained using the Carmel toolkit [11] as a proba-
bilistic finite state transducer (FST) mapping phones to letters. We
also allow this FST to delete phones and insert letters. The training
uses representative transcripts λ and their corresponding phone tran-
scripts π (derived from orthographic transcripts, as described in Sec-
tion 4), for speech in six languages other than the target language.
We assume that such a model approximates Pr(λ|π) for the target
language. Note that, while this assumption is not entirely accurate,
it is necessitated by the requirement that no native transcriptions in
the target language can be used in building any part of our system.

A crude measure of the quality of the PTs is given by the phone
error rate between π∗ = argmaxπ Pr(π|T ) and the reference phone
sequences. Table 1 lists these 1-best error rates on the SBS devel-
opment and evaluation sets, for all seven languages. However, the
1-best error rates do not accurately reflect the extent of information
in the PTs that can be leveraged during ASR adaptation. A fuller
picture is obtained by considering a collection of sequences Π that
are almost as probable as π∗ according to our model. Figure 1 shows
the trend of phone error rates (for three languages) obtained by using
collections Π of increasing size, plotted against an entropy estimate
of Π. This estimate measures the average entropy of phones in the
sequences in Π; e.g., 1 bit of entropy allows two equally probable
choices for each phone in π. We note that the phone error rates sig-
nificantly drop across all languages, staying within 1 bit of entropy
per phone, illustrating the extent of information captured by the PTs.

4. MULTILINGUAL BASELINES

The goal of building a multilingual system is two-fold. One is to
setup a baseline for generalizing to an unseen language without any
labeled audio corpus. The other is to have the baseline serve as a
starting point for adaptation.

The dataset consists of 40 minutes of labeled audio for training,
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10 minutes for development, 10 minutes for testing for each lan-
guage. The orthographic transcriptions are converted into phonemic
transcriptions in the following steps. Beginning with a list of the IPA
symbols used in canonical descriptions of all seven languages, sym-
bols appearing in only one language were each merged with sym-
bols differing in only one distinctive feature; this process proceeded
until each phone in the universal set is represented in at least two
languages. English words are identified and converted to phonemes
with an English G2P trained using the CMUdict [12]. We take the
canonical pronunciation of a word if the word appears in a lexi-
con, otherwise estimate the word’s pronunciation using a G2P. The
Arabic dictionary is from the Qatari Arabic Corpus [13], the Dutch
dictionary is from CELEX v2 [14], the Hungarian dictionary was
provided by BUT [15], the Cantonese dictionary is from I2R, the
Mandarin dictionary is from CALLHOME [16], and the Urdu and
Swahili G2Ps were compiled from simple rule-based descriptions of
the orthographic systems in those two languages [17].

We train a standard HMM with training data from six languages,
fine-tune hyperparameters on the development set of the seventh lan-
guage, and test the model on the evaluation set of the seventh lan-
guage. We assume that the lexicon of the target language is un-
known, but that we are allowed to restrict the universal phone set at
test time to output only phones in the target language. We also as-
sume we have access to texts of the target language, so that we can
train bigram phone language models on the phone sequences con-
verted from texts. The texts are collected from Wikipedia articles
linked from the main page of each language crawled once per day
over four months. Results are shown in Table 2 where we compare
results using the universal phone set and phone language model to
those obtained using language-dependent phone set and phone lan-
guage model. Without a language specific phone set and phoneme
language model, it is hard for a multilingual system to generalize to
an unseen language. This is true even if the system has seen closely
related languages such as Mandarin when tested on Cantonese.

As an oracle experiment, we also train language dependent
HMMs for each language with 40 minutes of labeled audio. Results
are shown in Table 2 for both GMM-HMM and DNN-HMM mod-
els. Our DNNs are trained with the cross entropy objective using the
same procedure described in [18]. 10% of the training data is used
for cross-validation. The frame-wise targets for the DNNs are one-
hot encodings of context-dependent phone states (numbering around
1000) obtained from HMM-GMM alignments. The DNNs have 6
hidden layers with 1024 sigmoid units in each layer, amounting to
around 6.6 million parameters.

5. SEMI-SUPERVISED BASELINES

The objective of building semi-supervised baseline systems is to
compare the efficacy of target language transcriptions generated
by an ASR system with mismatched transcriptions. Our semi-
supervised baselines use an acoustic model trained on a small
amount of transcribed data in the non-target training languages and
ASR transcriptions generated for a relatively larger amount of un-
labeled data in the target language. The acoustic model is trained
from scratch as opposed to performing an unsupervised adaptation
to the target language.

The setup for semi-supervised baselines is the same as that de-
scribed in Section 4 for multilingual training, but with an additional
5-6 hours of untranscribed audio in the target language. The target
language uses the same universal IPA phone set as the non-target
languages.

The method used for semi-supervised training is a modification

of the self-training approach described in [19]. The multilingual
DNN trained in Section 4 is used as a seed model to decode the
unlabeled audio. The phone language model used during decoding
was trained on target-language text. Lattice posteriors are used as
confidence measures and only frames with posteriors ≥0.7 on the
best path of the lattice are selected. We empirically determined that
it was better to use the posteriors as soft-targets during frame-based
cross-entropy training. This is different from the approach in [19],
which used the best path alignment as the target. Additionally, we
scaled the amount of transcribed data by 2 to create a good balance
between transcribed and untranscribed data as suggested in [19].

The results using these semi-supervised DNN-HMM systems
are shown in Table 3. Although, semi-supervised training improves
PER performance compared to the multilingual DNN-HMMs, it still
falls short of the improvements obtained by adaptation with proba-
bilistic transcriptions (described in Section 6). This is in spite of the
untranscribed audio data being several times larger than the proba-
bilistic transcription data.

6. ASR ADAPTATION USING PTS

As can be seen from Table 2, the multilingual baseline systems ap-
pear not to generalize well to an unseen target language. This sec-
tion will detail how we improve the generalization capability of these
multilingual systems to an unseen target language using mismatched
probabilistic transcriptions (described in Section 3).

Our ASR framework is based on weighted finite-state transduc-
ers (WFSTs) as outlined in [20]. In this framework, the acoustic
model is specified by a probabilistic mapping from acoustic signals
to a sequence of discrete symbols, and a WFST H mapping these
symbol sequences to triphone sequences. The other WFSTs in the
framework are C which maps down triphone sequences to mono-
phone sequences, a pronunciation model L and a language model
G. Since our tasks involve phone recognition, L is essentially an
identity mapping and G is a phone N-gram model.

To describe the adaptation process, it will be helpful to compare
the following two cases.

• In training the parameters of the baseline acoustic model, for
each training utterance, we work with the cascade H ◦ C ◦
L◦T , where T is a linear chain FST representing the training
transcript. The multilingual baselines described in Section 4
are trained in this manner using training data from languages
other than the target language.

• During adaptation, for each training utterance (in the target
language), we work with the cascade H ◦C ◦L ◦PT , where
PT is a WFST representing the probabilistic transcript, ob-
tained as in Section 3.

As noted in Figure 1, a PT contains significant amount of in-
formation beyond any single transcript extracted from the PT. Moti-
vated by this, the statistics for the MAP estimation are accumulated
from a lattice derived from the cascade H ◦ C ◦ L ◦ PT .

6.1. MAP estimation of the acoustic model

The Bayesian framework for maximum a posteriori (MAP) estima-
tion has been widely applied to GMM and HMM parameter esti-
mation problems such as parameter smoothing and speaker adapta-
tion [21].

Formally, for an unseen target language, we denote its acoustic
observations x = (x1, . . . , xT ), and its acoustic model parameter
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target language CA HG MD SW
multilingual GMM-HMM (universal) 79.64 (79.83) 77.13 (77.85) 83.28 (82.12) 82.99 (81.86)
multilingual DNN-HMM (universal) 78.62 (77.58) 75.98 (76.44) 81.86 (80.47) 82.30 (81.18)
multilingual GMM-HMM (language specific) 68.40 (68.35) 68.62 (66.90) 71.30 (68.66) 63.04 (64.73)
multilingual DNN-HMM (language specific) 66.54 (65.28) 66.08 (66.58) 65.77 (64.80) 64.75 (65.04)
monolingual GMM-HMM 32.77 (34.61) 39.58 (39.77) 32.21 (26.92) 35.33 (46.51)
monolingual DNN-HMM 27.67 (28.88) 35.87 (36.58) 27.80 (23.96) 34.98 (41.47)

Table 2. PERs of unadapted multilingual systems and monolingual systems on the evaluation and development sets (latter within parentheses).

Language Multilingual Semi-supervised Mult-L + PT adaptation
Code (MULT-L) (SS) (PT-ADAPT) % Rel. redn over MULT-L % Rel. redn over SS
CA 68.40 (68.35) 63.79 (62.46) 57.20 (56.57) 16.4 (17.1) 10.3 (9.2)
HG 68.62 (66.90) 63.53 (63.50) 56.98 (57.26) 16.9 (14.3) 10.2 (9.9)
MD 71.30 (68.66) 64.90 (64.00) 58.21 (57.85) 18.4 (15.7) 10.3 (9.7)
SW 63.04 (64.73) 58.76 (59.81) 44.31 (48.88) 29.6 (24.6) 24.7 (18.4)

Table 3. PERs on the evaluation and development sets (latter within parentheses) before and after adaptation with PTs.

set as λ, then the MAP parameters are defined as:

λMAP = argmax
λ

Pr(λ|x) = argmax
λ

Pr(x|λ) Pr(λ) (2)

where we use multilingual baseline GMM-HMM parameters to as-
sign the conjugate prior hyperparameters in p(λ), and take the modes
of the prior distributions as the initial model parameter estimates.
Using suitable models for these distributions, [21] derive update
rules in an EM algorithm for computing λMAP. For example, the
mean µik of the GMM mixture component k associated with HMM
state i is updated as:

µ̃ik =
τikµik + αikµ̂ik

τik + αik
(3)

αik =

T∑
t=1

cikt µ̂ik =

∑T
t=1 ciktxt∑T
t=1 cikt

where τik is a hyperparameter in the prior density for the mixture
component k of state i and cikt denotes the probability of the HMM
being in state iwith mixture component k given observation xt (esti-
mated using statistics accumulated from the cascadeH◦C◦L◦PT ).
In our setting, the initial value of µik is obtained from the multilin-
gual baseline model, and µ̃ik eventually converges to a model for the
target language data.

6.2. Implementation details

The baseline and the adapted models were implemented using
Kaldi [22]. In order to efficiently carry out the required operations
on the cascade H ◦ C ◦ L ◦ PT , we carefully design PT . PT

is an acceptor defined as projinput(P̂ T ) where P̂ T is a WFST
mapping phone sequences to English letter sequences obtained as a
cascade of WFSTs modeling the distributions shown in Equation 1
and projinput refers to projecting onto the input labels. For the
purposes of computational efficiency, the cascade for P̂ T includes
an additional WFST restricting the number of consecutive deletions
of phones and insertions of letters (to a maximum of 3 in our exper-
iments). We use two additional disambiguation symbols [20], apart
from the ones used in typical Kaldi recipes, to determinize these
insertions and deletions in P̂ T . MAP adaptation for acoustic model
was carried out for a number of iterations (12 for CA & MD, 14 for
HG & SW, with a re-alignment stage in iteration 10).

6.3. Experimental results

Table 3 presents phone error rates (PERs) on the evaluation (and de-
velopment) sets for four different languages. MULT-L corresponds
to the multilingual GMM-HMM baseline error rates reproduced
from Table 2 and SS refers to the DNN-HMM multilingual base-
lines adapted with untranscribed audio in the target language. We
observe a consistent drop in error rates moving from MULT-L to SS.

PT-ADAPT corresponds to PERs from the multilingual GMM-
HMM systems adapted to mismatched transcriptions from the tar-
get language. We observe substantial PER improvements using PT-
ADAPT over MULT-L across all four languages. We also find that PT
adaptation consistently outperforms the SS systems for all four lan-
guages. (The relative reductions in PER compared to both baselines
are listed in the last two columns.) This suggests that adaptation with
PTs is providing more information than that obtained by model self-
training alone. It is also interesting that we obtain significantly larger
PER improvements with PTs for Swahili compared to the other three
languages. We conjecture this may be partly because Swahili has a
relatively simple phonology (compared to the other three languages)
and most consonants have almost the same pronunciation as in En-
glish [23].

7. CONCLUSIONS

In this work, we demonstrate the utility of mismatched transcrip-
tions in significantly improving ASR systems for different target lan-
guages. A relative reduction of phone error rate of up to 25% (for
Swahili) is observed on adapting baseline ASR systems using mis-
matched transcriptions. Similar impact is shown for languages from
different language families and containing sounds with distinctive
phonological properties.
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