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ABSTRACT
In this paper, we present the system developed by the Center for
Robust Speech Systems (CRSS), University of Texas at Dallas, for
the NIST 2015 language recognition i-vector machine learning chal-
lenge. Our system includes several subsystems, based on Linear
Discriminant Analysis - Support Vector Machine (LDA-SVM) and
deep neural network (DNN) approaches. An important feature of
this challenge is the emphasis on out-of-set language detection. As
a result, our system development focuses mainly on the evaluation
and comparison of two different out-of-set language detection strate-
gies: direct out-of-set detection and indirect out-of-set detection.
These out-of-set detection strategies differ mainly on whether the
unlabeled development data are used or not. The experimental re-
sults indicate that indirect out-of-set detection strategies used in our
system could efficiently exploit the unlabeled development data, and
therefore consistently outperform the direct out-of-set detection ap-
proach. Finally, by fusing four variants of indirect out-of-set detec-
tion based subsystems, our system achieves a relative performance
gain of up to 45%, compared to the baseline cosine distance scoring
(CDS) system provided by organizer.

Index Terms— language recognition, i-vector machine learning
challenge, out-of-set detection, deep neural network

1. INTRODUCTION

The i-vector framework [1–10] has become the standard approach
in state-of-the-art language recognition systems, due to its compact
and efficient representation of language-dependent variability. Fol-
lowing the success of the i-vector machine learning challenge for
speaker recognition [11–15], the motivation of the NIST 2015 i-
vector machine learning challenge is to advance the classification
systems used for language recognition [16]. By directly providing
i-vectors to all participants, and thereby bypassing any front-end sig-
nal processing, the challenge is open to a broad range of researchers
from different backgrounds.

The current i-vector challenge in language recognition poses
a new challenge of detecting out-of-set languages without any la-
beled out-of-set samples. All participants are provided with labeled
i-vector samples from 50 different languages, defined as in-set lan-
guages. Along with this labeled training dataset, an unlabeled devel-
opment dataset is also provided. This development dataset includes
both the samples from the 50 in-set languages as well as those belong
to an unknown number of out-of-set languages.
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By analyzing the official performance measure of this challenge,
it can be observed that the weight associated with out-of-set lan-
guage detection is significantly higher than any individual in-set lan-
guage [16]. For example, missing one out-of-set language sample
in the evaluation set results in a penalty that is more than 10 times
higher than missing one in-set language sample. Therefore, accu-
rate out-of-set language detection becomes the key to success in this
challenge.

To address this new challenge of out-of-set language detection,
we evaluate two different strategies: direct out-of-set detection and
indirect out-of-set detection. The difference between these two ap-
proaches is on whether the unlabeled development data are used for
out-of-set modeling or not. While both strategies are not new in the
area of language recognition [17–19], the performance of those two
approaches has been task dependent. Therefore it is important to
evaluate both strategies in current i-vector machine learning chal-
lenge.

During our system development, both direct and indirect out-of-
set detection approaches start by training an in-set language classi-
fication system on the labeled training data. LDA-SVM and DNN
classifiers [20] are used for this purpose. In direct out-of-set detec-
tion approach, the out-of-set language samples in the evaluation data
are detected by directly using threshold on the confidence scores ob-
tained from in-set classification results. That is to say, we keep the
in-set classification labels of evaluation data if the confidence score
of classification is higher than a preset threshold, while treating the
rest as out-of-set labels.

On the other hand, in indirect out-of-set detection approach, in-
stead of directly applying threshold on the classification confidence
scores in evaluation data, we first detect out-of-set language samples
from the development dataset using the same confidence score based
approach. After retrieving the out-of-set language samples from de-
velopment data, the classifier is retrained by treating out-of-set as an
additional language class. The retrained classifier with extended lan-
guage classes are applied to evaluation data to achieve final results
including both in-set and out-of-set labels. Based on the evaluation
score on progress subset, we observe a significant advantage of indi-
rect out-of-set detection approach compared to the direct out-of-set
detection approach.

In addition to these out-of-set detection approaches, several im-
portant improvements on the baseline CDS based system are ap-
plied to achieve competitive overall results in the challenge. These
improvements include: 1) additional out-of-set clustering using k-
means; 2) score calibration for out-of-set detection in development
data; 3) the use of duration as an auxiliary input feature along with
LDA transformed features; 4) a majority voting based subsystem fu-
sion.
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2. LANGUAGE RECOGNITION SYSTEM

In this section, we describe two main classifiers used in our system
both for in-set language classification and out-of-set language detec-
tion.

2.1. LDA-SVM subsystem

In this subsystem, the input i-vectors are first length normalized fol-
lowed by a whitening transformation. Since the labeled training
dataset was provided, it could be used to train an initial LDA trans-
formation matrix with the purpose of maximizing the separability
of 50 in-set languages, as well as dimensionality reduction. As the
dimension of LDA must be less than the class number, the LDA
matrix projects i-vector onto a 49-dimension vector. After obtain-
ing out-of-set samples from development data during indirect out-
of-set detection approach (see Sec. 3.2), the LDA is applied again
to separate the out-of-set language from other languages. The LDA-
transformed features are then fed into an SVM classifier both for
in-set and out-of-set detection. An SVM with an RBF kernel is used
in our experiments.

2.2. DNN subsystem

We trained a fully connected feed-forward neural network using the
in-set training i-vectors for the DNN subsystem. 10% of the labeled
training data per language (30 i-vectors) was randomly set aside as
a held-out set to monitor the DNN training. The hidden-layer units
used sigmoid activation function. The output layer used logistic re-
gression nodes with a softmax function, with output nodes corre-
sponding to the 50 in-set languages.

Next, we used the DNN to estimate the out-of-set labels from the
development data using the scores of the output layer. We trained a
second DNN with both the in-set and out-of-set labels that had an
extra node in the output layer to also detect the out-of-set languages.
The DNN had 2 hidden layers with 2048 nodes each. The second
DNN was used in the language recognition experiments reported
in this study. Further details on the design and implementation of
the DNN based subsystem for language recognition can be found
in [20].

3. OUT-OF-SET DETECTION

To address the challenge of out-of-set detection, we evaluated two
different strategies for out-of-set detection: direct out-of-set detec-
tion and indirect out-of-set detection.

3.1. Direct out-of-set detection

The direct out-of-set detection approach is the most straightforward
means of out-of-set detection. It can be achieved by simply apply-
ing confidence threshold on the classification scores obtained from
the evaluation data. As initial classifier was trained with samples of
50 in-set languages, it can be assumed that an out-of-set language
should have a low probability score output. In our experiment, we
used LDA-SVM classifier for direct-out-set detection.

3.2. Indirect out-of-set detection

While the direct out-of-set detection achieves moderate performance
improvement, the detection is based entirely on the knowledge of
in-set languages. To achieve more discriminative training for out-of-
set detection, a better way is to obtain some instances of out-of-set

language, and then train a second classifier to discriminate out-of-set
languages from other in-set languages. Specifically, our procedure
for doing indirect out-of-set detection is as follows:

1. Perform i-vector length normalization and whitening trans-
formation.

2. Train a 50-class in-set language classifier with training data.
3. Apply LDA-SVM as well as confidence thresholding ap-

proach to detect out-of-set language instances from develop-
ment data.

4. Cluster the detected out-of-set language instances into multi-
ple clusters using k-means algorithm.

5. Train a 50 + K classifier using both the training data and
detected (and clustered) out-of-set language instances, where
K is the number of k-means clusters from previous step.

The Fig. 1 is an illustrated distribution of detected out-of-set lan-
guage samples from development data using indirect out-of-set de-
tection strategy. In the following sections, we provide the details of
the above steps.

3.2.1. confidence threshold

After training a 50-class LDA-SVM, the classifier is used to assign
each sample of the development data into one of the 50 in-set class.
We treat the probability of this LDA-SVM based in-set classification
as the confidence of classification. Based on the fact that the clas-
sifier trained on in-set language samples would produce relatively
lower probability on out-of-set languages, we use in-set classifica-
tion confidence as a measure for detecting out-of-set instances from
development data.

The main challenge with this confidence thresholding based ap-
proach is to find the appropriate threshold. In our experiment, we
optimize this threshold from training data. Specifically, a randomly
selected 30% of the training data is separated out and used as held-
out dataset. The trained in-set language classifier is then applied to
the held-out dataset. Based on the target and non-target classifica-
tion probability distribution as in Fig. 2, the threshold for out-of-set
detection is chosen as 0.4 in our system.

Fig. 2: Red points show the distribution of target classification prob-
ablity as a function of log durations. Gray points show the distri-
bution of non-target classification probability as a function of log
durations. The purple line is the threshold for out-of-set detection.

3.2.2. out-of-set clustering

To understand the problem of out-of-set detection more intuitively,
we plot the distributions of each in-set language along with detected
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Fig. 1: Ilustration of detected out-of-set language distribution with t-SNE scatter plot [21]. T-SNE is a superior method for visualizing high
dimensional data in lower dimension. The gray marker ’x’ indicates inset languages and the red marker ’oos’ indicates out-of-set language
instances detected from development data.

out-of-set languages in Fig. 1. The first observation is that many
detected out-of-set instances overlap with in-set clusters, indicating
potential false detections. Another important observation is that the
out-of-set languages are distributed over a larger area than any of
the in-set languages, suggesting that they would be modeled best
by using multiple classes. To achieve this, we further cluster the
detected out-of-set languages into multiple clusters, using a bottom-
up k-means algorithm.

3.2.3. score calibration

While the classification probability is a good indication of out-of-set
language detection, the distribution of this probability varies for each
language. Specifically, the distribution of target and non-target prob-
ability varies for each language and therefore the optimal confidence
is class dependent. To reduce such score distribution variations be-
tween languages, we normalized the classification scores using the
mean and variance of corresponding language score distribution.

3.2.4. class weighting

After extending the training data with detected out-of-set language
instances, (50 + K)-class classifier is trained to classify both the
50 in-set languages as well as out-of-set languages at the same time.
During the training of this (50+K)-class classifier, the 50 in-set lan-
guages are weighted equally, while higher weightings are applied to
K out-of-set classes. This increased weighting on out-of-set classes
is to achieve a low miss error rate on out-of-set detection.

3.2.5. durations

In our system, the duration information is used as an auxiliary feature
for classifier training. The duration features is obtained simply by
applying log function on the duration of each sample. The obtained
duration feature is concatenated with LDA transformed features for
training and classification.

4. EXPERIMENTS

In this NIST i-vector machine learning challenge, three datasets are
released to participants by organizer. It includes training, develop-
ment and evaluation datasets. The data in all three datasets com-
prises of i-vectors derived from previous NIST Language Recogni-
tions Evaluations (LRE’s) and other sources including IARPA BA-
BEL Program. The duration of speech from which each i-vector
was extracted is also provided. The training dataset is composed
of 15000 instances of i-vectors belonging to 50 different languages,
defined as in-set language in this challenge. All data in the training
dataset comes with language labels. In addition, a separate devel-
opment dataset of 6431 non-labeled i-vectors is also provided for
training. The i-vectors in the development dataset include both the
50 in-set languages as well as an unknown number of out-of-set lan-
guages. For the evaluation of the system, 6500 i-vectors are provided
as test dataset. A randomly selected 30% of the test dataset is used
to monitor the progress on the online challenge leaderboard. The
results we report in this paper are based on this dataset. The scoring
metric used in this evaluation is the cost function defined by:

Cost =
(1− POOS)

n
∗

n∑
k

Perror(k) + POOS ∗ Perror(OOS).

(1)
In (1), Perror(k) = (no. of errors for class k

no. of trials for class k
), n = 50, and

POOS = 0.23. From the cost function provided above, it can be
concluded that the out-of-set detection is very important for success
in this challenge.

4.1. In-set Language Identification

To evaluate the different classifiers for language recognition chal-
lenge independent of out-of-set detection quality, the classifier is
trained to output only 50 in-set languages. The result is shown in
Table 1. It can be seen that the LDA-SVM produces best perfor-
mance for in-set language identification scenario.
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Table 3: Performance of variant indirect out-of-set detection based systems as well as the fused system.

classifier OOS clustering score calibration duration feature weighting Score
LDA-SVM y n y y 22.67
LDA-SVM y y n n 23.38
LDA-SVM y y y n 24.05

DNN y n n n 26.56
Fused - - - - 21.84

Table 1: Evaluation of different classifiers for in-set language iden-
tification.

System Score
CDS (baseline) 39.59
LDA+CDS 38.03
LDA+SVM 35.32
DNN 37.38

Table 2: Comparison of direct and indirect out-of-set detection.

System Score
Direct (DNN) 32.71
Direct (LDA-SVM) 28.51
Indirect (DNN) 26.56
Indirect (LDA-SVM) 22.67

4.2. Results with Out-of-set Detection

Both the direct out-of-set detection and indirect out-of-set detection
approaches are evaluated and compared in our experiments. The
result in Table 2 compares the best single system based on direct
out-of-set detection against the best single system based on indirect
out-of-set detection.

In addition, three variants of indirect out-of-set detection sys-
tems were developed based on LDA-SVM classifier. Those three
systems vary by the strategies used in indirect out-of-set detection as
described in Table 3. The differences within those three LDA-SVM
based systems and DNN based system provides complementary in-
formation during final system fusion. The performance of above
individual systems is shown in Table 3.

The Table 4 shows how each sub-module in our indirect out-
of-set clustering approach contributed to our best performing single
system.

Table 4: Contribution of each submodule of indirect out-of-set de-
tection system to the best performing single system based on LDA-
SVM.

System Score
LDA-SVM 25.64
+ Duration feature 24.72

+ OOS clustering 23.49
+ Class weighting 22.67

4.3. System Fusion

Finally, the output of the three LDA-SVM based subsystems and
DNN based subsystem are fused together at the final language clas-
sification level. Given the labels from each system, a simple scheme
based on majority voting (with one system taking precedence) was
applied. The result is shown in Table 3.

5. CONCLUSION

In this study, we give a detailed description along with score analysis
of the system developed by the Center for Robust Speech Systems
(CRSS), University of Texas at Dallas, for the NIST 2015 language
recognition i-vector machine learning challenge. The proposed sys-
tem focuses primarily on the effective out-of-set detection strategy
by comparing two approaches: direct out-of-set detection and indi-
rect out-of-set detection. According to our experiments, the indirect
out-of-set detection systems significantly outperform the direct out-
of-set detection approach and is able to achieve good performance
on the final evaluation of the challenge. The out-of-set language de-
tection approaches evaluated for this challenge could potentially be
beneficial to many real-world out-of-set detection problems.
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