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ABSTRACT
This study proposes a novel deep neural network (DNN)
based approach to language identification (LID) for the NIST
2015 Language Recognition (LRE) i-Vector Machine Learn-
ing Challenge. State-of-the-art DNN based LID systems
utilize large amounts of labeled training data. The 2015 LRE
i-Vector Machine Learning Challenge limits the access to
only ready-to-use i-Vectors for LID system training and test-
ing. This poses unique challenges in designing DNN based
LID systems, since optimized front-ends and network archi-
tectures can no longer be used. We propose to use the training
i-Vectors to train an initial DNN for LID. Next, we present a
novel strategy to use this initial DNN to estimate out-of-set
language labels from the development data. The final DNN
for LID is trained using the original training data, and the
estimated out-of-set language data. We show that augment-
ing the training set with out-of-set labels leads to significant
improvement in the LID performance. Our approach obtains
very competitive costs (defined by NIST) of 26.56, and 25.98
respectively, on the progress and evaluation subsets of the
challenge. Since the amount of training data is very limited
(300 i-Vectors per language), this study outlines a successful
recipe for DNN based LID using very limited resources.

Index Terms— language identification, i-Vector, deep
neural network, limited resources

1. INTRODUCTION

The task of language identification (LID) involves automat-
ically identifying the language in which a given speech ut-
terance was spoken. LID systems are used in a multitude
of applications: multilingual language translation, emergency
or consumer call routing, surveillance and security applica-
tions [1, 2]. Recently, LID has received considerable atten-
tion, primarily due to the several NIST Language Recognition
Evaluations (LRE), and also in part due to programs such as
DARPA Robust Automatic Transcription of Speech (RATS).
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Several approaches to LID have been developed employ-
ing Gaussian Mixture Model (GMM) based techniques [3],
and Support Vector Machine based approaches [4]. Recently,
i-Vector based techniques have become state-of-the-art in
LID, closely following similar developments in the Speaker
Identification (SID) [5, 6, 7]. More recently, Deep Neural
Network (DNN) and Convolutional Neural Network (CNN)
based LID approaches are becoming increasingly popular,
and have been reported to offer comparable, and in many
cases superior performance compared to i-Vector based LID
techniques formulated using a Gaussian Mixture Model Uni-
versal Background Model (GMM-UBM) based framework
[8, 9, 10].

In [11], an i-Vector based LID formulation using bottle-
neck features extracted from a neural network was shown
to outperform a state-of-the-art i-Vector based LID system
using Shifted Delta Cepstra (SDC) features. In [8], the
GMM-UBM was replaced by a CNN originally trained for
Automatic Speech Recognition (ASR), to extract posteriors
for an i-Vector based LID formulation. This offered sig-
nificant improvements compared to a GMM-UBM i-Vector
based LID system on the DARPA RATS LID task. A more
direct approach to LID using DNNs was proposed in [10].
The approach involved training a DNN to output the language
classes, and an additional class for the out-of-set languages.
The DNN based LID approach was shown to outperform an
i-Vector based LID system when a large amount of labeled
training data was available.

The NIST 2015 Language Recognition (LRE) i-Vector
Machine Learning (ML) Challenge offers a new paradigm
for the development of LID techniques, by limiting the ac-
cess to only ready-to-use i-Vectors for LID system training,
development, and testing [12]. Additionally, the amount
of labeled training data is very limited (300 i-Vectors per
language). This offers unique challenges in designing a
CNN/DNN based LID strategy, since these approaches uti-
lize large amounts of labeled training data: either to train
a CNN/DNN for computing the posteriors in a CNN/DNN
based i-Vector LID system, or to train a DNN directly for the
output language classes. Moreover, these CNN/DNN based
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LID techniques use optimal acoustic features such as filter-
bank outputs or PLP features [8, 10] which is not feasible in
the NIST LRE i-Vector ML Challenge paradigm.

This study proposes a novel approach to LID using a
DNN. We propose to train an initial DNN for LID using i-
Vectors. Since the test-set contains out-of-set languages with
no corresponding labeled training data, we also present a
novel out-of-set estimation strategy. The final DNN is trained
using the original training data, and the out-of-set language
labels estimated from the development data using the initial
DNN. The proposed 2-step DNN training approach is shown
to offer very competitive costs (defined and evaluated by
NIST) on the progress and evaluation sets of the NIST 2015
LRE i-Vector ML challenge, and significantly outperforms a
baseline LID system provided by NIST.

2. LANGUAGE IDENTIFICATION (LID) USING
I-VECTORS

An i-Vector based LID approach was first introduced in [5, 7].
In the i-Vector paradigm, a language-specific GMM mean su-
pervector M can be represented in terms of the language and
channel independent supervectorm, a low rank total variabil-
ity matrix T , a vector w, and a residual noise term ε as,

M = m+ Tw + ε. (1)

In (1), w is a random vector with a standard normal distribu-
tion N(0, I), and ε is a residual noise term N(0,Σ). The T
matrix is learned using large amounts of training data. In the
LID framework, utterance-labels correspond to the language
of the corresponding utterances. A comprehensive treatment
of the i-Vector extraction procedure is presented in [13].

Once the i-Vectors corresponding to the training and test-
sets are extracted, several approaches such as a Support Vec-
tor Machine (SVM) back-end, Gaussian back-end, or Gaus-
sianized Cosine Distance Scoring (GCDS) can be used to de-
termine the language of the test utterances [5, 14, 15].

3. THE NIST 2015 LRE I-VECTOR MACHINE
LEARNING CHALLENGE

The NIST 2015 LRE i-Vector Machine Learning Challenge is
aimed at developing new LID techniques employing i-Vectors
for conversational/narrow-band broadcast speech [12]. The
challenge has 3 distinct data-sets: a training set with 300
i-Vectors per language corresponding to each of the 50 in-
set target languages, a test-set, and a development set. The
speech utterances corresponding to the training-set i-Vectors
were chosen so that their durations exhibit a log-normal dis-
tribution with a mean duration of 35.15s. The development
and test-set were unlabeled, and also contained i-Vectors cor-
responding to out-of-set languages. Table 1 shows the number
of i-Vectors for the data-sets of the challenge.

Data Set No. of i-Vectors
Training 15000

Development 6431
Test 6500

Table 1. Composition of the NIST 2015 LRE i-Vector Ma-
chine Learning Challenge data-sets.

The primary task of the challenge is to identify the cor-
responding language of a test i-Vector, or to assign it as an
“out of set” (a single label corresponding to the out-of-set
languages), if the i-Vector is deemed not to correspond to any
of the 50 in-set languages. The test-set was divided randomly
into progress subset (30% of the test-set) and evaluation sub-
set (70% of the test-set). The challenge rules did not allow
using the outputs corresponding to other test i-Vectors to be
used in any way in evaluating the output of a given test i-
Vector[12]. The performance was assessed using the follow-
ing cost function defined by NIST,

Cost =
(1− POOS)

n
∗

n∑
k

Perror(k)+POOS∗Perror(OOS).

(2)
In (2), Perror(k) = (no. of errors for class k

no. of trials for class k ), n = 50, and
POOS = 0.23. The cost for progress subset and evaluation
subset were evaluated by NIST.

4. DEEP NEURAL NETWORK (DNN) FOR LID
USING I-VECTORS

In [8], large amounts of labeled training data were used to
initially train an ASR system, which was then used to gener-
ate the senone alignments to train a CNN. In this framework,
the CNN/DNN replaced a GMM-UBM to compute the pos-
teriors needed for i-Vector extraction, and subsequent steps
of i-Vectors based LID essentially remained unchanged. The
front-end for CNN/DNN training utilized filter-bank outputs.
A more direct approach to LID using DNNs was outlined in
[10], where the output layer nodes correspond to the in-set
languages along with a single node for out-of-set languages.
This approach also utilized large amounts of labeled training
data and employed PLP features.

Our study proposes to train a DNN for LID using i-
Vectors unlike existing CNN/DNN based LID techniques.
To account for the out-of-set data present in the test-set, we
adopt a novel 2-step DNN training strategy, where the initial
DNN is trained using only in-set labeled training data. The
initial DNN is then used to estimate out-of-set labels from the
development data. Next, we train a second DNN for LID with
both in-set and estimated out-of-set labels. Moreover, since
the amount of training data is very limited, we also investigate
and comment on the efficacy of some popular techniques to
overcome the issue of limited training data. We have used the
PDNN toolkit for the experiments reported in this study [16].
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The following sub-sections describe details of the proposed
DNN based approach for LID using i-Vectors.

4.1. DNN Training for in-set Languages using i-Vectors

We use a fully connected feed-forward neural network for
LID in the experiments reported here. The hidden-layer units
use a sigmoid activation function. The output layer is a soft-
max layer with output nodes corresponding to the in-set lan-
guages. Let the target classes be represented as Y , W and b
be the weight matrix and bias vector respectively. The output
at the ith node of the output layer, corresponding to the input
vector x can be expressed as,

P (Y = i|x,W, b) = softmaxi(Wx+ b)

=
eWix+bi∑
j

eWjx+bj
. (3)

Next, the predicted language ypred is evaluated as,

ypred = argmaxiP (Y = i|x,W, b). (4)

The highest score corresponding to the label evaluated in (4)
can be obtained using

ymax = maxiP (Y = i|x,W, b). (5)

Since the amount of labeled training data is very limited,
we explore several techniques to examine if they offer any im-
provement in the performance of our DNN based LID system.
Of particular interest are techniques of dropout, and unsuper-
vised generative pre-training, which have been reported to be
very effective when training DNNs with limited amounts of
data [17, 18].

In the dropout technique, certain units of the hidden layers
together with their connections are dropped randomly. This,
in turn, minimizes the overfitting in the DNN by reducing the
co-adaptation of the network parameters [17]. Unsupervised
generative pre-training allows the DNN to use more informa-
tion from the training data than contained within the labels
alone [18]. It has been reported to prevent overfitting by intro-
ducing regularization [19], and has been widely used in DNN
based ASR techniques [18, 20]. Additionally, L2-norm reg-
ularization is also applied since it reduces overfitting by pre-
venting the network weight parameters from assuming very
large values.

4.2. Estimating out-of-set Labels for Training from De-
velopment Data

The DNN trained on the in-set languages is used to estimate
labels corresponding to out-of-set languages from the devel-
opment data. Specifically, corresponding values of ymax are
computed using (5) for the i-Vectors of the development set.
Next, all i-Vectors with the corresponding scores ymax <
θ for some suitable threshold θ (computed using the devel-
opment set) are assigned the label “out of set” (label corre-
sponding to out-of-set data).

4.3. DNN Training with in-set and out-of-set Labels

In the second stage, a new DNN is trained using the i-Vectors
for the in-set languages and the i-Vectors corresponding to the
out-of-set languages estimated from the development data.
Thus, this DNN has an extra node in the output layer com-
pared to the initial DNN to account for the out-of-set lan-
guages. The same strategies as mentioned previously in Sec
4.1 are applied to make optimal use of the limited training
data. The language labels for the test i-Vectors were assigned
using (4). Fig. 1 presents an overview of the proposed DNN
based LID approach.

Since the amount of total training data available increased
after including the labels for out-of-set languages, we also ex-
plored varying the architecture of the DNN compared to what
was used for the initial DNN mentioned in Sec. 4.1. Specif-
ically, we explored using more units in the hidden layers as
well as deeper networks.

5. EXPERIMENTS, RESULTS AND DISCUSSIONS

An initial DNN for LID was trained using the i-Vectors of the
training set. We employed the mini-batch Stochastic Gradient
Descent (SGD) algorithm with a mini-batch size of 256, and
backpropagation to train the DNN [21]. The DNN had 2 hid-
den layers with 1024 units each. The input layer had 400
nodes corresponding to the 400-dimensional i-Vectors pro-
vided by NIST for the challenge. A dropout factor of 0.2 was
used for each of the 2-hidden layers of the DNN. The output
layer had 50 nodes corresponding to all the in-set languages.
For each of the in-set languages, 10% of the labeled training
data (30 i-Vectors per language) was randomly set aside as a
held-out set to monitor DNN training.

5.1. Effect of out-of-set Detection on the Cost

From (2), it is clear that detecting “out of set” labels correctly
is critical to obtaining a competitive cost function value on
the test-set. In Table 2, the results for two different sets of
output-labels are shown for the progress subset. These were
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Fig. 1. 2-step DNN training for LID using i-Vectors.
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obtained using the same initial DNN (DNN1) trained with
the in-set languages. The output-labels for “No out of set”
were obtained using (4) by using the estimated in-set output-
labels for the test i-Vectors. Next, using (5), ymax was esti-
mated for each i-Vector of the test-set. To obtain the output-
labels for “With out of set”, any ypred with the corresponding
ymax < δ , for some suitable threshold δ estimated using the
development data, was assigned the output-label “out of set”.

LID System Output-labels Cost (progress subset)
DNN1 No out of set 37.38
DNN1 With out of set 32.71

Table 2. Cost obtained using the initial DNN (DNN1)
trained on the in-set languages for output-labels without (No
out of set), and with the out-of-set (With out of set) labels.

As can be observed from results in Table 2, detecting out-
of-set languages in the output offers a big improvement by
lowering the cost by 4.67% absolute (12.49% relative).

5.2. LID with DNN trained using in-set and Estimated
out-of-set Labels

Table 3 shows results on the progress subset using the fi-
nal DNNs trained on both the in-set and estimated out-of-
set labels compared against a Cosine Distance Scoring (CDS)
baseline system provided by NIST [12]. Since the estimated
labels (1307) for out-of-set languages added approximately
10% more data to the original training-set (13500 i-Vectors
for in-set training set), we investigated using more units per
hidden layer for the DNN. To this end, Table 3 shows two
DNNs: DNN2 1024 with 2 hidden layers each with 1024
units, and DNN2 2048 with 2 hidden layers each with 2048
units. A dropout factor of 0.5 was used for each hidden layer
of the 2 DNNs.

LID System Cost (progress subset)
DNN2 1024 26.82
DNN2 2048 26.56

CDS (baseline) 39.59

Table 3. Cost obtained using the DNNs with 1024
(DNN2 1024), and 2048 (DNN2 2048) units per hidden-layer
trained using the augmented (in set + estimated out-of-set)
training set compared against a CDS baseline system.

Comparing results of Table 2 and Table 3, including the
estimated out-of-set labels in DNN training offered a signifi-
cant reduction in cost by 5.89% absolute (18% relative), when
the cost obtained using DNN2 1024 (26.82) (Table 3) is com-
pared against the “With out of set” DNN1 from Table 2. In-
creasing the units in the hidden layers offered a marginal re-
duction in cost as evident by the results for DNN2 2048. Both
DNN2 1024 and DNN2 2048 are significantly better than the
CDS baseline system by over 32% (relative).

DNN2 2048 obtained a cost of 25.98 on the evaluation
subset of the NIST 2015 LRE i-Vector ML challenge. The re-
sults obtained using the proposed DNN based LID approach
are comparable to SVM based LID techniques, and offer fur-
ther improvements in system fusion of the two approaches
[22]. We also explored using more than 2 hidden layers for
training the DNNs. Adding more layers to the DNN caused
degradation in LID performance since the limited training
data was insufficient to estimate the new additional param-
eters.

5.3. Investigating the Efficacy of Dropout and Generative
Pre-training for DNN Training

We investigated the use of dropout and unsupervised genera-
tive pre-training for DNN training with limited resources. It
was observed that LID performance improved with progres-
sively higher values of the dropout factor from 0.1 to 0.5, after
which it started to degrade. A dropout factor of 0.5 for each of
the 2-hidden layers achieved the DNN results shown in Table
3.

When DNN2 1024 (trained on in-set and estimated out-
of-set labels) was retrained after applying unsupervised gen-
erative pre-training (using the unlabeled development set), the
cost on the progress subset degraded from 26.82 to 28.46. Ev-
idently, pre-training did not offer any improvement to the pro-
posed DNN based approach for LID. Unlike optimal acoustic
features like filter-bank outputs, i-Vectors offer a more com-
pact representation of a speech utterance. We hypothesize
that this causes i-Vectors to lose much of the additional in-
formation compared to acoustic features such as filter-bank
outputs. Since unsupervised generative pre-training works by
utilizing the additional information contained within the fea-
tures [18], it probably fails to access such information when
i-Vectors are used. The limited amount of available develop-
ment data could be another reason why unsupervised genera-
tive pre-training failed to offer any improvement.

6. CONCLUSIONS

This study presented a novel approach to LID using very
limited training data. To explicitly detect the out-of-set lan-
guages, we proposed a novel 2-step DNN training strategy, in
which a DNN for LID trained using the in-set labeled training
data was used to estimate out-of-set labels from an unlabeled
development set. The training set augmented with the out-
of-set labels was then used to train a second DNN for LID
that could also detect an out-of-set language in addition to the
in-set languages. This was shown to offer significantly better
LID performance than a DNN utilizing only the in-set labeled
data for training. Also, the proposed approach significantly
outperformed a CDS based baseline system, and obtained
very competitive costs on the progress and evaluation subsets
of the NIST 2015 LRE i-Vector Machine Learning Challenge.
This study has therefore outlined a successful recipe for DNN
based LID using very limited resources.
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