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ABSTRACT

I-vector is a state-of-the-art technique widely used in spoken
language identification systems. Since i-vectors include total
variability factors, discriminant analysis methods have been
introduced to find the most discriminative features while re-
moving the undesired variables for language identification,
for example, linear discriminant analysis (LDA) and nonpara-
metric discriminant analysis (NDA). However, these methods
either do not consider or use weak local structures of the data.
In this study, we introduce a local Fisher discriminant analy-
sis (LFDA) as a post-processing discriminant analysis method
to extract the discriminative features from i-vectors. LFDA is
a full-rank method which takes the local structure of the data
into account for non-Gaussian distribution data, i.e., multi-
modal. Compared with LDA and NDA, LFDA is a pair-wise
local method which enhances the centralization of the distri-
bution of samples in the same class to obtain larger amounts
of discriminative features. Experimental results indicate that
LFDA is more effective than LDA and NDA for the i-vector-
based language identification task.

Index Terms— LFDA, language identification, discrimi-
nant analysis, i-vector

1. INTRODUCTION

Spoken language identification (LID) is a task to determine
whether the spoken language exists within a speech utterance
or not [1, 2]. Recently, an i-vector-based approach widely
used in speaker recognition has been introduced to LID [3].
The i-vector paradigm provides an effective way to compress
Gaussian mixture model (GMM) supervectors by confining
all sorts of variabilities (both language and non-language) to
a low-dimensional subspace, referred to as the total variabil-
ity. I-vector-based approach obtained state-of-the-art perfor-
mance in many systems for both speaker recognition and lan-
guage identification tasks [3, 4, 5, 6].

Since i-vector models all sorts of variabilities, such as lan-
guage, speaker, channel, session, in the same total variability
space, a Fisher’s linear discriminant analysis (LDA) method
[7] was widely used in the i-vector-based approach to deter-
mine a number of discriminative vectors by transforming fea-
tures into a new space with an axis transformation. However,
as introduced in several studies [5, 8, 9], there are several dis-

advantages in the conventional LDA method. Applying LDA
on i-vector approach for LID tasks also face some challenges
which will limit the performance of the system: (1) LDA
method assumes the underlying distribution of classes to be
Gaussian with a common covariance matrix for all classes.
However, the distribution of i-vectors shows multimodality
(samples in the same class belong to several separate clus-
ters) due to short duration utterance and data degradation [10,
11]. (2) LDA can only provide up to C − 1 (C is the num-
ber of classes) discriminative features limited within the rank
of between-class scatter matrix. This low dimensional fea-
tures may not be sufficient for the i-vector-based LID tasks in
which the number of target languages is much smaller than
the dimensionality of the i-vectors. (3) In LDA analysis, the
global average centroid of each class is taken into account in
class scatter matrix calculation while ignores the local data
structure variation.

To effectively embed multimodal data, a locality-preserving
projection (LPP) method [12] was proposed for multimodal
data by considering its local structure. However, LPP is an
unsupervised method which does not take the label infor-
mation into account. Nonparametric discriminant analysis
(NDA) method [8] was proposed to overcome the above
limitations of LDA, by measuring the between-class scatter
matrix on a local basis using the k-nearest neighbor (NN)
rule. The scatter matrix is generally full-rank, thus loosens
the bound on extracted feature dimensionality. Recently,
NDA was successfully applied on face recognition [13] and
LID task [5], which used the means of the local k-NN rule on
between-class scatter matrix. However, NDA method use a
weak local structure of the data.

In this study, we introduce a local Fisher discriminant
analysis (LFDA) [9] method to overcome the above limita-
tions of LDA for the i-vector-based LID task. LFDA was
proposed for dimensionality reduction and it was success-
fully applied for face recognition tasks [14, 15]. To the best
of our knowledge, the LFDA method has not yet been stud-
ied for either i-vector-based systems or LID tasks. Differ-
ent from NDA, LFDA is a pair-wise local method which en-
hances the centralization of the distribution of samples in the
same class to obtain greater amounts of discriminative fea-
tures. The main contributions of this study are to introduce
LFDA for the state-of-the-art i-vector-based LID tasks and
analyze its advantages by comparing with LDA and NDA
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methods. Detailed discussions of the comparison are given
in Section 2.4. Experimental results in Section 3 indicate that
LFDA is a more effective method than LDA and NDA meth-
ods for the i-vector-based LID tasks.

2. DISCRIMINANT ANALYSIS-BASED METHODS

2.1. Linear discriminant analysis

Linear discriminant analysis (LDA) is a very popular tech-
nique for feature selection and dimensionality reduction. It
has the advantage of defining new axes by maximizing the
discrimination between the variability of different classes
while minimizing the intra-class variability.

Let xi ∈ <d(i = 1, 2, ..., n) be d-dimensional samples
and yi ∈ {1, 2, ..., c} be associated class labels, where n is
the number of samples and N is the number of classes. Let
Sw and Sb be the within- and between-class scatter matrices
defined as,

Sw =

c∑
i=1

Ni∑
j=1

(xj − µi)(xj − µi)T , (1)

Sb =

c∑
i=1

Ni(µj − µ)(µj − µ)T , (2)

whereNi is the number andµi is the mean of samples in class
i, µ is the mean of all samples, T denotes the transpose.

The LDA transformation matrix (ϕ1,ϕ2, ...,ϕm) (where
ϕi ∈ ϕ) can be obtained by selecting the generalized eigen-
vectors associated to the generalized eigenvalues λ1 ≥ λ2 ≥
... ≥ λm of the following generalized eigenvalue problem:

Sbϕ = λSwϕ. (3)

As we have discussed in Section 1, LDA is a parametric
method and highly depends on the data distribution (Gaus-
sian) and suffers from the relative low dimensional features.
To improve LDA, several methods have been developed, such
as NDA [8], subclass discriminant analysis (SDA) [16] and
kernel Fisher discriminant (KFD) [17].

2.2. Nonparametric discriminant analysis

To overcome the mentioned limitations of LDA, the NDA
technique [8, 13] was proposed which focuses on measuring
the between-class scatter on a local basis using the k-NN rule.
With this local rule, the NDA can model the multimodal data
better than LDA. Recently, NDA [5] was successfully applied
on LID task. The within-class scatter matrix of NDA has the
same form as the LDA (i.e., Eq. 1). The between-class scatter
matrix of NDA is defined as,

SNDA
b =

c∑
i=1

c∑
j=1,j 6=i

Ni∑
l=1

ωijl (x
i
l −M

ij
l )(xil −M

ij
l )T , (4)

where xil denotes the l-th sample from class i, Ni is the sam-
ple number in class i, M ij

l is the local mean of k-NN samples
(totally K) for xil from class j, and ωijl is a weight function
defined as,

ωijl =
min{dα(xil,NNk(xil, i)), d

α(xil,NNk(xil, j))}
dα(xil,NNk(xil, i)) + dα(xil,NNk(xil, j))

, (5)

where NNk(Xi
l , j) is the k-th nearest neighbor of xil in class

j, d(.) is the Euclidean distance, and α is the parameter rang-
ing from zero to infinity which controls the changing speed of
the weight with respect to the distance ratio.

With the weight function ωij , the boundary samples were
emphasized. This is because, for samples near the boundary,
it approaches 0.5 and drops off to zero if the samples are far
away from the boundary.

2.3. Local fisher discriminant analysis

Similar to NDA method, local Fisher discriminant analysis
(LFDA) method [9] was proposed to overcome the poor per-
formance of LDA when samples are in the same class from
several separate clusters (i.e., multimodal). LFDA combines
the idea of LDA and LPP to evaluate the within- and between-
class scatter matrices in a local manner, by which class sep-
arability and local structure preservation could be attained at
the same time. The within- and between-class scatter matrices
of LFDA are defined as,

SLFDA
w =

1

2

n∑
i,j=1

A
w

i,j(xi − xj)(xi − xj)
T , (6)

SLFDA
b =

1

2

n∑
i,j=1

A
b

i,j(xi − xj)(xi − xj)
T , (7)

where
A
w

i,j =

{
Ai,j/nc if yi = yj = c,

0 if yi 6= yj ,
(8)

A
b

i,j =

{
Ai,j(1/n− 1/nc) if yi = yj = c,

1/n if yi 6= yj ,
(9)

where A is an affinity matrix, and Ai,j means the affinity be-
tween sample xi and xj (pair-wise). The local scaling method
[18] was used to determine the value of A:

Ai,j = exp(
−d2(xi,xj)

d(xi,xK)d(xj ,xK)
), (10)

where d(xi,xj) is the distance from xi to xj and xK of
d(xi,xK) is the K-th neighbor of point xi in class i.

2.4. Comparison of LDA, NDA and LFDA

LDA, NDA and LFDA are both discriminant analysis meth-
ods, where LDA is a parametric method which can only ex-
tract up to C − 1 discriminative features. NDA and LFDA

5826



Fig. 1. Distribution of the top two PCA components for the
RAW feature and LDA, NDA, LFDA transformed features.
(three languages (blue: Arabic, red: Tatar, green: Oromo) of
the training data in data set 2)

are full-rank methods which make use of all the samples in
the construction of the within- and/or between-class scatter
matrices instead of merely using the class centers. Therefore,
more discriminative features can be extracted to improve the
classification performance than LDA.

Both NDA and LFDA take the local structure of data into
account to overcome multimodal data. NDA uses the mean
of local k-NN samples to estimate the between-class scatter
matrix. Instead of using the simple local mean, LFDA is a
pair-wise method which estimates the contribution of the lo-
cal k-NN samples, respectively. This leads to a more flexible
and accurate estimation of the scatter matrices.

In Eqs. 8 and 9 of LFDA, we can see that 1/n − 1/nc
is negative while 1/nc and 1/n are positive. This implies
that if the data pairs in the same class are made close, the
within-class scatter matrix becomes “small” and the between-
class scatter matrix becomes “large”. On the other hand, if the
data pairs in different classes are apart from each other, the
between-class scatter matrix becomes “large”. In NDA, the
boundary samples are emphasized with the weight function,
however, samples in the same class are not taken into account
on the within- and between-class scatter (i.e., j 6= i in Eq.
4). From the above analysis, we can see that LFDA has more
powerful capability than NDA on keeping the sample pairs in
the same class close to each other.

Figure 1 shows an example of the distribution of RAW
features and LDA, NDA, LFDA transformed features for
three languages. This figure shows that LDA and NDA enjoy
a similar distribution which is different from LFDA. The fea-
ture distribution with LFDA tends to be more localized and
centralized (e.g., the blue and red points).

Table 1. Experimental data sets.(The number is the utterance
number, language number is 50.)

Data set Training Dev. Test
Set1 3738 (utt. length ≥ 30s) 2500 2500
Set2 10000 (utt. length > 0)

3. EXPERIMENT

In this section, experiments are conducted to evaluate the ef-
fectiveness of the proposed LID system.

3.1. Data and classifier

The data used in this study are based on the training data
of NIST i-vector challenge1 which were extracted using the
same method in [3]. Each i-vector is a vector of 400 com-
ponents. Segment durations have a very wide range from 1s
to more than 800s. To develop our LID system, we reorga-
nized the data to three groups: training, development and test
data. These three group data were randomly selected without
overlapping with each other. Because most of the LID tasks
use longer utterance data as training data, e.g., 30 seconds,
we prepared two sets of training data, one (set 1) only in-
cludes data with duration longer than 30s (around 70 samples
for each class), the other (set 2) includes all the selected sam-
ples (200 samples for each class). The two data sets share the
same development and test data (50 samples for each class).
The details are shown in Table 1.

A discriminative SVM method with linear kernel was
used as classifier following the state-of-the-art i-vector-based
LID systems [4, 11]. 5-fold cross validation method was used
to find the best value of the cost parameter of SVM in the
model training step. The scoring metric used for the 2015
NIST i-vector challenge was used. Since, we only focus on
the “close-set” problem, we rewrite the scoring metric as,

Cost =
1

c

c∑
k=1

Perror(k), (11)

where Perror(k) = (#errors class k/#trials class k),
and c is 50 in this study.

3.2. Parameters investigation

There are several parameters in both NDA and LFDA that
need to be carefully selected. For NDA method, the number
of k-NN samples K, parameter α in the weight function (Eq.
5) and the dimension of the generated features D need to be
considered. For LFDA, K and D need to be selected. The
cost parameter of SVM for each experiment was determined
with 5-fold cross-validation method, respectively. The devel-
opment data were used to investigate these parameters. Table

1https://lre.nist.gov/
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Table 2. System performance (Cost×100) on development
data with NDA (D=200, K=11) at different α.

Method&Data 0.5 1 2 3
NDA Set1 26.88 26.36 26.88 27.08
NDA Set2 18.76 18.72 18.72 19.04

Table 3. System performance (Cost×100) on development
data with NDA (D=200, α=1) and LFDA (D=200) at different
number of nearest neighbor samples K.

Method&Data 3 5 7 9 11 13
NDA Set1 26.48 26.48 25.60 26.76 26.36 26.96
NDA Set2 18.48 18.44 18.88 18.08 18.72 19.00
LFDA Set1 23.80 23.40 23.28 23.00 22.84 23.00
LFDA Set2 16.76 16.52 16.68 16.80 16.76 16.80

2 shows the results for parameter α which determines how
rapid the decay in the weights of nearest neighbor samples
occurs. These experiments were done by fixing D to 200 and
K to 11. The results show that both on data set 1 and 2, the
best performances were obtained when α was set to 1.

Table 3 shows the investigation on the number ofK. Both
NDA and LFDA methods are affected by the value of K. For
data set 1, NDA and LFDA methods obtained the best results
when K is 7 and 11 on data set 1, and 5 on data set 2.

Different from LDA, both NDA and LFDA are full-rank
methods, therefore, higher dimensional features can be ob-
tained with these two methods. Table 4 shows the results at
different dimensions by fixing K to 11 and α to 1. NDA ob-
tained the best results with 100-dimensional feature on data
set 1 and 300-dimensional feature on data set 2, for LFDA,
they were 200 and 400, respectively. From these results, we
can see that both NDA and LFDA obtained the best results
with a higher dimension. However, LDA can only obtain 49-
dimensional discriminant feature, which maybe cause infor-
mation loss, especially in a high-dimensional space with lim-
ited training samples.

3.3. Results on test data
Based on the results in Section 3.2, experiments were con-
ducted on test data to compare LFDA with LDA and NDA
methods. The parameters K, D and α were confirmed based

Table 4. System performance (Cost×100) on development
data with NDA (K=11, α=1) and LFDA (K=11) at different
feature dimensions.

Method&Data 50 100 200 300 400
NDA Set1 27.72 25.92 26.36 27.00 26.72
NDA Set2 19.00 17.52 17.64 17.28 18.12
LFDA Set1 23.52 23.16 22.84 23.32 23.56
LFDA Set2 17.20 16.40 16.76 16.56 16.08

Table 5. System performance (Cost×100) with RAW, LDA,
NDA and LFDA at best parameters on test data.

Data(Test) RAW LDA NDA LFDA
Set1 29.44 25.08 24.04 22.96
Set2 17.40 16.28 17.48 15.60

on the best results in Tables 2, 3 and 4, i.e., (K, D, α) of
NDA were (7, 100, 1) and (5, 300, 1) for data set 1 and 2,
respectively; (K, D) of LFDA were (11, 200) and (5, 400)
for data set 1 and 2, respectively. Cost parameter of SVM
was learned with 5-fold cross validation method. Table 5
shows the results of these experiments; the results of origi-
nal i-vector (RAW) are also included. From these results we
can see that the generated features with LDA achieved bet-
ter results than the RAW features on both data sets. The im-
provement benefits from the discriminant analysis of LDA by
considering the label information which could improve the
discriminative capability of the original i-vector feature.

NDA achieved better results than both LDA and RAW on
data set 1. However, no improvements were made on data
set 2. Compared with LDA and NDA, LFDA obtained the
best results on both data sets. The LFDA method obtained
8.45% and 4.49% relative improvements than the LDA and
NDA methods, respectively, on data set 1. Even on data set
2, the LFDA method obtained 4.18% relative improvement
than the LDA method. As we have discussed in Section 2.4,
LFDA is a full-rank, pair-wise method which takes the local
structure of the data into account very effectively. Compared
with LDA, the full-rank method is very important for LID
tasks because the number of target languages are often lim-
ited. The effective LFDA method can specifically bring ben-
efit to the i-vector-based LID systems because the i-vectors
suffer multimodal distribution due to short duration utterance
or data degradation. Our results show the effectiveness of
LFDA method for i-vector-based LID tasks.

4. CONCLUSIONS

The i-vector-based LID system obtained state-of-the-art per-
formance for LID tasks. Since i-vector includes total variabil-
ity factors, and suffers multimodal distribution due to short
duration utterance or data degradation, it is important to ap-
ply an effective discriminant analysis method for the i-vector-
based LID tasks. In this study, we introduced LFDA for the
i-vector-based LID tasks. First, it is a full-rank method which
can generate higher dimensional features. Second, it takes
the local structure of the data into account with a pair-wise
method, which leads to a more flexible and accurate estima-
tion of the scatter matrices. Finally, LFDA has more power-
ful capability than NDA of keeping the sample pairs in the
same class close to each other wisely. Our experimental re-
sults showed the effectiveness of LFDA for the i-vector-based
LID tasks.
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