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ABSTRACT

This paper proposes an analytical approach based on Kernel

Canonical Correlation Analysis (KCCA) for domain adap-

tation. To generate paired instances for KCCA, we mapped

source and target data onto both source and target principal

components. We performed pair-wise domain adaptation

between four emotional speech corpora with different lan-

guages (English, German, Italian, and Polish) to validate

the approach. We compared our approach with the Shared-

Hidden-Layer Auto-Encoder (SHLA) and kernel based prin-

cipal components. On average, the proposed approach yields

higher classification performance.

Index Terms— Transfer learning, domain adaptation,

cross lingual, emotion recognition, canonical correlation

analysis

1. INTRODUCTION

The fast pace of progress in the ubiquitous Internet facili-

tates collection of more data in less time. This is beneficial

for the machine learning domain where more data can repre-

sent better the feature distribution. However, the side effect

is that the labels of the collected data may not be available

and they need to be annotated by human effort. This could

be costly, tedious, cumbersome and time consuming, even by

using crowed-sourcing platforms [1]. Semi-supervised ap-

proaches such as active learning try to reduce this effort by

automatic labeling of the data which have a high probability

in a class and get the label from a human when the certainty

is not adequate [2]. Nevertheless, for big databases this ap-

proach will be also less practical. Instead, transfer learning

(TL) approaches try to use the knowledge which is already

gained from other databases and use this knowledge for a

new database [3]. Therefore, no more human effort would

be needed for the annotation. In addition, in TL, it is not

necessary to hold the assumption of having the same distri-

bution for training and test data. This is beneficial when the

training and test data are not obtained in the same way (e. g.,

studio vs. real environment audio recording) or their types are

Fig. 1. Domain adaptation using Shared-Hidden-Layer Auto-

Encoder.

different (e. g., image vs. speech). TL approaches are catego-

rized based on the domain and the task of the source and the

target corpora. Generally, if both domains and both tasks are

the same and the target corpus is not annotated, the problem

is called domain adaptation [4].

Kernel Mean Matching (KMM) was proposed to deal

with domain adaptation problems by directly estimating the

resampling weights through matching training and test dis-

tribution means in a reproducing kernel Hilbert space [5].

Recently, it was applied to reduce the acoustic and speaker

difference across training and test data for speech emotion

recognition [6]. Furthermore, Deng et al. proposed the use

of Shared-Hidden-Layer Auto-Encoders (SHLA) to obtain

shared views of source and target emotional speech corpora

[7]. In this approach, having two data corpora χtr ∈ R
n×Q

and χte ∈ R
m×Q with different sample size (m and n) and

Q features, an artificial neural network with Q neurons in

the input layer, H < Q neurons in the hidden layer, and 2Q
neurons in the output layer is created (cf. Fig. 1). A gradient

descent approach is performed to tune the weights. Finally,

the outputs of the hidden layer are used for the training and

classification. They compared this method with KMM, show-

ing an improvement in cross-lingual emotion classification

from speech.

In this paper, motivated by the success of SHLA, we
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propose a domain adaption method, which applies Canon-

ical Correlation Analysis (CCA) to find the views with the

highest correlations between source and target corpora. CCA

has been applied for speaker adaptation in the domain of

speech recognition [8, 9], and audiovisual synchronization

[10] among others. CCA is a statistical method to find lin-

ear bases so that the correlations between the projections of

the variables onto these bases are mutually maximized [11].

Kernel CCA (KCCA) is a variant of CCA where it uses the

kernel trick to capture non-linear correlation hidden in data.

KCCA has been widely used for multimodal dimensionality

reduction, such as for fMRI analysis [12] and speaker iden-

tification [13]. Further, it was found that CCA based feature

reduction can overcome the problem of over-fitting and pro-

vide a compact set of high quality features for computational

paralinguistics applications [14]. Additionally, it has also

been used as multi-view transfer learning for cross-language

information retrieval where a parallel corpus is generated by

text translation [15, 16].

Rather than using CCA as a feature reduction, we extend

CCA to alleviate the mismatch between different languages

for emotion recognition from speech. We generate two views

of each training and test corpora to construct two paired cor-

pora. Finally, we use Kernel CCA to find the views of the two

paired corpora where their mappings onto those views have

the highest correlation.

The remainder of this paper is organized as follows. The

next section provides the basis for CCA and Kernel CCA and

our approach to apply it on domain adaptation. In Section 3,

we describe the databases, and in Section 4, we provide the

results and compare it with SHLA. Finally, Section 5 draws

conclusions and points out future directions.

2. METHOD

Similar to Auto-Encoder transfer learning, the idea is to seek

a shared representation of features for the source and target

databases. Then, a model is built on these features from the

source database, and is used to label the target database. In the

following, first we introduce general CCA and Kernel CCA,

and then we describe the proposed approach on how to deploy

Kernel CCA for transfer learning.

2.1. CCA

Consider two databases X ∈ R
n×d and Y ∈ R

n×p having n
paired multivariate random vectors (xi,yi) with dimensions

d and p, respectively. CCA finds mappings (views) for X
and Y so that the mapped data are highly correlated. In other

words, CCA maximizes:

ρ = max
w,v

corr(Xw,Y v) = max
w,v

wTCxyv√
wTCxxwvTCyyv

.

(1)

where Cxy is the cross covariance matrix between X and

Y . w can be found through Lagrangian approach and is the

eigenvectors in the form of:

CxyC
−1
yy Cyxw = λ2Cxxw. (2)

Then, we select the N vectors corresponding to the N largest

eigenvalues. v is equal to

v =
C−1

yy Cyxw

λ
. (3)

Xw and Y v have the highest correlation on the vector corre-

sponding to the largest eigenvalue, and the second highest on

the second vector corresponding to the second largest eigen-

value and so on. The upper limit of N is the minimum of rank

of X and Y .

2.2. Kernel CCA (KCCA)

The Kernel CCA defines a Kernel on data and similar to CCA

it seeks to maximize the correlation between mappings of

these kernels:

ρ = max
α,β

αTKxKyβ√
αTK2

xαβTK2
yβ

, (4)

where Kx and Ky are the kernel matrices corresponding to

the two representations. As linear kernel they are Kx =
XXT and Ky = Y Y T , and as RBF kernels they are de-

fined as Kx(xi,xj) = e−
||xi−xj ||2

2σ2 , where σ is a free param-

eter. The solution to (4) is in the form of an eigenproblem:

(Kx + κI)−1Ky(Ky + κI)−1Kxα = λ2α, (5)

where κ is the regularization parameter. Moreover,

β =
(Ky + κI)−1Kxα

λ
. (6)

Finally, the two mapped vectors are Kxα and Kyβ [17].

2.3. KCCA-based domain adaptation

CCA and KCCA are useful when xis and yis are paired to-

gether. For example, Kaya et al. used CCA and KCCA for

feature reduction where xi are the features and yi are the bi-

narized class labels [14]. Different from the use of KCCA

for feature reduction, this paper makes use of KCCA in con-

junction with Principal Component Analysis (PCA) for do-

main adaptation. Note that, PCA is used to create two rep-

resentations (views) of each corpora on two sets of orthog-

onal vectors, as principal components, to preserve informa-

tion on lower dimensions. The schematic of the approach is

shown in Fig. 2. First, source data X is mapped once on its

principal components, Xpx , and another time on target data
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Fig. 2. proposed approach. Superscript Px and Py denote the

data mapping to X’s and Y ’s principal components, respec-

tively.

principal components, Xpy to create two views of X . Simi-

larly, target data is mapped on its principal components, Y py ,

and on source data principal components, Y px to create two

views of Y . Then, we reduce dimensions for each mapping

to keep 99% of variation on principal components (This will

also help to avoid singularity during CCA process). Then, we

find the shared view between the paired mapped data on the

source principal components, [xpx ;ypx ] and the target prin-

cipal components [xpy ;ypy ] using canonical correlation anal-

ysis. Afterwards, we pick top N dimensions of the mapped

data with largest correlations. Finally, we train a classifier on

the mapped training data and test it on the mapped test data.

In general, there is no need to have the two views with the

same number of transferred features. However, for the follow-

ing analyses we kept them the same, equal to the maximum

of the two reduced dimensions.

3. EXPERIMENT

We compare the results of using no domain adaptation with

five models of transfer learning on four emotional speech

databases. Two of the domain adaptation methods are the

proposed KCCA approach with RBF and linear kernels. We

set N = 30, 40, 50 to create three models and we used

Bayesian fusion to combine the decisions of each model. We

set the κ value as 10. The two other approaches are based

on Kernel PCA with linear and RBF kernels. In this case,

we map data on three subspaces; X’s principal components,

Y ’s principal components, and [X;Y ]’s principal compo-

nents. We perform the classification on these three views and

combine the decisions. Additionally, we compare the meth-

ods with the SHLA with the same number of hidden layers

(N = 30, 40, 50) and decision fusion approach. We ran this

process ten times and provided the average of the results.

3.1. Databases

Four emotional speech databases with different languages

have been investigated. Some information about these

databases are provided in Table 1. Utterances of all cor-

pora are generated by actors/actresses in studio environment.

EMODB is a German emotional speech corpus where 10

sentences with emotionally neutral content is uttered in dif-

ferent emotions. In the SAVEE corpus, each actor uttered 15

sentences in different emotions and they are validated by 10

subjects. The Italian corpus (EMOVO) contains utterances

of 14 sentences simulating six emotional states plus neutral

state. In the Polish Emotional Speech Dataset, each speaker

uttered five different sentences with six types of emotional

load. To uniform labels, we have mapped emotions onto

two classes: positive and negative valence. This mapping is

provided in Table 1.

3.2. Feature extraction

We extracted 384 features as in the Interspeech 2009 Emo-

tion Challenge using openSMILE [22]. It comprises 12 func-

tionals of 2 × 16 acoustic Low-Level Descriptors (LLDs)

including their first delta regression. The LLDs are zero-

crossing-rate, root mean square of frame energy, pitch fre-

quency, harmonics-to-noise ratio by autocorrelation function

and Mel-frequency cepstral coefficients 1-12. The 12 func-

tionals are minimum, maximum, mean, standard deviation,

kurtosis, skewness, relative position, ranges, and two linear

regression coefficients with their mean square error. Addi-

tionally, we removed the features which are highly (positive

or negative) correlated with each other (|ρ| > 0.95) or if they

have small variance (< 10−10). This feature pruning keeps

311 features. Moreover, we removed the outlier data where a

feature value is larger than 10 times of the standard deviation.

Finally, we performed subject based normalization followed

by corpus-based normalization (SC-normalization) which is

shown to boost cross-language emotion recognition [23]. The

SC-normalized data is fed to the transfer learning method.

4. RESULT

Table 2 shows the performance of classification using Simple

Logistic classifier. The choice of this non-parametric classi-

fier was to avoid parameter tuning and have a fair comparison

between databases. Unweighted Average Recall (UAR) is

used as performance measure. Classifications without trans-

fer learning are denoted as ‘Direct C’ for corpus normalized

data and ‘Direct SC’ for SC-normalized data. Only in one

case (out of 12) the performance has not been improved

by transfer learning. In 7 cases (out of 11) KCCA, in 3

cases SHLA, and in 1 case PCA provide the highest accu-

racy. As it can be seen, there is no clear winner between

the methods. However, on average, Direct SC yields 2.5%

improvement with respect to Direct C. Furthermore, KCCA

(Linear), KCCA (RBF), KPCA (Linear), KPCA (RBF) and

SHLA yield 2.19%, 2.81%, 2.71%, 2.61%, and 2.0% average

improvement over Direct SC, respectively.

The advantage of the KCCA and KPCA over SHLA is
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Table 1. Corpora information and the mapping of class labels onto Negative/Positive valence. (#m): number of male speaker,

(#f): number of female speakers, (Rate): Sampling rate.

Corpus Language #m #f Rate Negative Valence (#) Positive Valence (#)

EMODB [18] German 5 5 16 Anger, Sadness, Fear, Disgust, Boredom (385) Neutral, Happiness (150)

SAVEE [19] English 4 0 44 Anger, Sadness, Fear, Disgust (240) Neutral, Happiness, Surprise (240)

EMOVO [20] Italian 3 3 44 Anger, Sadness, Fear, Disgust (336) Neutral, Joy, Surprise (252)

Polish [21] Polish 4 4 44 Anger, Sadness, Fear, Boredom (160) Neutral, Joy (80)

Table 2. UAR of transfer learning methods.
EMODB SAVEE EMOVO Polish

EMODB

Direct C 55.8 56.4 71.9

Direct SC 59.2 58.7 69.0

KCCA (Lin.) 64.6 57.9 72.8
KCCA (RBF) 65.2 57.0 72.5

KPCA (Lin.) 64.4 57.6 72.2

KPCA (RBF) 63.5 57.2 70.0

SHLA 63.7 56.8 59.7

SAVEE

Direct C 62.5 54.6 65.0

Direct SC 63.1 57.6 62.8

KCCA (Lin.) 70.6 59.3 69.4

KCCA (RBF) 71.9 59.5 67.5

KPCA (Lin.) 70.1 58.7 72.8

KPCA (RBF) 67.9 58.3 74.1
SHLA 67.7 59.0 70.2

EMOVO

Direct C 58.0 51.2 55.3

Direct SC 59.1 55.4 71.0

KCCA (Lin.) 62.9 58.5 65.9

KCCA (RBF) 60.2 56.0 71.9
KPCA (Lin.) 65.4 56.0 62.8

KPCA (RBF) 66.7 56.0 67.5

SHLA 67.3 58.2 64.3

Polish

Direct C 65.1 55.4 57.3

Direct SC 65.9 56.9 54.3

KCCA (Lin.) 70.9 58.7 56.1

KCCA (RBF) 68.4 61.9 54.1

KPCA (Lin.) 69.3 58.7 57.8

KPCA (RBF) 67.9 57.1 57.6

SHLA 71.1 60.6 58.3

the analytical solution instead of gradient descent. Therefore,

there is no risk of falling into a local minima and the learn-

ing speed is faster. Moreover, using KCCA prevents the ne-

cessity of having the same number and type of features. On

the other hand, autoencoders with large number of layers and

nodes with non-linear activation function can represent bet-

ter non-linearity in the data distribution. However, to achieve

this non-linear mapping, there is a need for much more data

samples.

5. CONCLUSION

This paper proposed an approach to use Kernel Canonical

Correlation Analysis (CCA) on principal component sub-

spaces for domain adaptation. Cross corpora transfer learning

for an emotion recognition task from four emotional speech

corpora with different languages have been chosen to investi-

gate the validity of our approach. The Kernel CCA has been

compared with the Kernel PCA as well as an autoencoder ap-

proach named as Shared Hidden Layer Autoencoder (SHLA).

On average, the proposed approach performs better than the

others.

Our future study will focus on the use of non-linear map-

ping instead of linear PCA to generate subspaces. Addition-

ally, discriminant mappings (such as Discriminant Locality

Preserving CCA [24]) could be applied on the training cor-

pora to increase the level of discrimination on the correspond-

ing subspace. Finally, having bigger datasets, we will also

investigate Deep Canonical Correlation Analysis [25] on do-

main adaptation.
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