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ABSTRACT 

Speech-based depression detection has gained importance in recent 
years, but most research has used relatively quiet conditions or 
examined a single corpus per study.  Little is thus known about the 
robustness of speech cues in the wild.  This study compares the 
effect of noise and reverberation on depression prediction using 1) 
standard mel-frequency cepstral coefficients (MFCCs), and 2) 
features designed for noise robustness, damped oscillator cepstral 
coefficients (DOCCs). Data come from the 2014 Audio-Visual 
Emotion Recognition Challenge (AVEC).  Results using additive 
noise and reverberation reveal a consistent pattern of findings for 
multiple evaluation metrics under both matched and mismatched 
conditions. First and most notably: standard MFCC features suffer 
dramatically under test/train mismatch for both noise and 
reverberation; DOCC features are far more robust. Second, 
including higher-order cepstral coefficients is generally beneficial. 
Third, artificial neural networks tend to outperform support vector 
regression. Fourth, spontaneous speech appears to offer better 
robustness than read speech.   Finally, a cross-corpus (and cross-
language) experiment reveals better noise and reverberation 
robustness for DOCCs than for MFCCs.  Implications and future 
directions for real-world robust depression detection are discussed.  
 

Index Terms—depression detection, noise robustness, 
reverberation robustness, cross-corpus, mental health, AVEC 
Challenge, spontaneous speech, read speech, MFCC, DOCC 

1. INTRODUCTION 

Speech has become an important source for health and mental 
health assessment and monitoring, as it can be obtained and 
analyzed in a noninvasive, natural, and inexpensive manner. 
Speech has been shown to reflect a range of speaker state 
information via features at various stages of the production process 
[1-14].  Current clinical analysis of depression is predominantly 
interview based, where such assessments provide an objective 
score for each patient [1], based on which further diagnosis and 
treatment are carried out. Such subjective clinical assessments are 
both labor- and time-intensive. Automatic detection of depression 
can help medical practitioners monitor changes in depression 
status, and prioritize follow-up with clinicians.  

Recent studies [15, 16] have claimed that the speech of 
subjects suffering from Major Depressive Disorder (MDD) shifts 
compared to non-MDD subjects, indicating that speech can be a 
useful source for extracting bio-signatures of MDD. Several 
researchers have explored detecting MDD bio-signatures from 
speech. A wide array of features has been explored in the 
literature, in particular standard mel-cepstral features (MFCCs) 
[17, 18]; prosodic features (such as pitch, energy, and speaking 
rate, etc.) [19, 20, 21] and traditional speech-property-based 
features, such as formants, formant bandwidths, spectral energies, 
spectral tilt, etc. [18, 19, 20, 21, 22]. Correlation-structure features 

have been proposed by [23], and demonstrated impressive MDD 
detection accuracy on speech. Other studies [24] have used the 
popular MFCC features along with their velocity and acceleration 
coefficients.  

Studies have also used both audio and video modalities [24, 
25] for MDD detection. Work in [25] demonstrated that using both 
audio and video modalities improves MDD detection accuracy 
compared to using each modality alone.  Yet speech is often easier 
to record and archive compared to video, and is also expected to be 
more invariant. It is also typically understood to be more private. 
Hence, speech-based MDD detection strategies can be expected to 
be cheaper in cost and relatively easier to prototype. Research in 
[24] demonstrated that audio data gave slightly better results than 
video data; however, other studies [26, 27] have shown the reverse. 

Though recent results indicate the feasibility of automatic 
prediction of depression from speech, how such automated 
methods would perform under unseen acoustic background 
conditions is not yet fully explored. Most studies use data collected 
in laboratory setups with little or no background noise or 
reverberation. The effect of noise on emotion prediction has been 
explored in [41, 42, 43], but little work has been done to study the 
effect of noise and/or reverberation on depression data.  

Cross-corpus experiments [40, 32] can serve as an evaluation of 
how different techniques generalize across corpora and such 
experiments reveal how systems behave under mismatched 
training-testing conditions. Environmental degradations in cross-
corpus evaluations can potentially increase the difficulty of the 
prediction task. However, for the medical domain, and depression 
data in particular, only limited evaluation of the robustness of 
different algorithms across corpora has occurred, mainly due to 
medical data’s limited availability and regulatory restrictions. 

The effects of noise and/or reverberation on the performance of 
many speech-based applications (such as automatic speech 
recognition, speaker recognition, language identification, etc.) have 
been explored, but these effects are largely unexplored for speech-
based automated analysis of mental health. Automated methods are 
expected to be exposed to varying environmental conditions, hence 
assessing how such methods would behave under varying 
background conditions is imperative.  

In this work, we assess the robustness of an automated 
depression-prediction system by exploring robust acoustic features 
known to perform well in speech recognition tasks under noisy 
[28] and reverberant [29, 30] background conditions. Through 
performance analysis, we demonstrate that a combination of a 
robust acoustic feature and a suitable machine-learning algorithm 
achieves robust performance. Further, we show that under noisy 
and reverberated conditions, performance from spontaneous 
speech is almost always tends to be better than that of read speech, 
which is in line with some [31] but not all prior observation. 
Further, we explore how such systems perform for a totally 
different corpus, recorded in a different language, using an entirely 
different scoring scheme. 
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2. DATA 

The dataset used in this work is an audio-visual depression corpus 
[27] distributed with the AVEC-2014 baseline system. It contains 
300 videos of subjects (one subject per recording). This dataset 
includes 84 subjects, with some recorded more than once. The 
duration of each recording ranges from 20 to 50 min with an 
average duration of 25 min. The total duration of all clips is 240 
hrs. The recordings took place in a number of quiet settings; 
however, they contain some ambient noise, reverberation and 
distortions introduced by the environment. The recordings consist 
of two sub-tasks: Northwind (read speech) and Freeform 
(spontaneous speech), which were supplied as 300 (2x150) audio-
video files.  

The dataset was split into three non-overlapping partitions of 
training, development, and test sets with 50 Northwind-Freeform 
pairs in each set, for a total of 300 task recordings. The training, 
development, and test sets had similar distributions in terms of age, 
gender, and depression levels. There was no session overlap 
between partitions; however, we did notice some speaker overlap 
across the partitions. The depression scores for the training and 
development set were distributed to the challenge participants by 
the organizers. The test set scores were not provided; please note 
that in this work, we present only results on the development set. 
The depression scores provided with the AVEC-2014 dataset 
consist of an individual’s self-reported depression levels specified 
according to the Beck depression rating scale [39]. 

For cross-corpus analysis, we used data collected at Vanderbilt 
University (VU), at the emergency room and Psychiatric 
Treatment Unit (PTU) offices. The patients were interviewed for 
15 to 30 minutes about their feelings and life events. Then they 
were asked to read aloud a half page of text called “The Rainbow 
Passage.” This short reading took 1–3 minutes. If a patient was 
admitted for therapy at the hospital, one or two follow-up sessions 
were also recorded; the last was the release interview from the 
facility. The details about the dataset can be obtained from [34]. 
Note that the clinicians used the HAM-D depression score to rate 
each subject in this dataset. The HAM-D depression score is the 
most widely used clinician-administered depression-assessment 
scale and was designed for use after an unstructured clinical 
interview. 

We artificially corrupted the audio data with noise and 
reverberation. Fourteen different types of noise were used, 
including factory, babble, traffic, highway traffic, mixed crowd, 
city traffic, etc. The AVEC-2014 dataset was corrupted at three 
signal-to-noise ratios (SNRs): 20 dB, 10 dB, and 5 dB, whereas the 
VU-PTU dataset was corrupted at 15 dB and 5 dB.  

Reverberation was added by using the setup distributed through 
the 2014 REVERB challenge [33]. For reverberation, twelve 
different room conditions were used, where the room types were 
small, medium, and large, each having two different room-impulse 
responses (RIRs) with two different microphone positions. Note 
that a distant microphone setup [33] was used in this study to make 
the problem of reverberation more adverse. In addition to 
reverberation, around 40dB of ambient room noise was added to 
simulate more realistic recording conditions. Note that the ambient 
noise SNR was uniformly between 20dB to 60dB. 

3. FEATURES 

As a baseline, we used mel-frequency cepstral coefficients 
(MFCCs), which tend to be used in most work on depression as 

well as emotion detection.  MFCCs were computed using 24 mel-
filterbanks and N-cepstral (N was varied from 13 to 24) 
coefficients that were concatenated with the energy coefficient. 

As a comparison feature set we used Damped Oscillator 
Cepstral Coefficients (DOCC) [34]. This is a robust acoustic 
feature set that has demonstrated robustness in speech recognition 
under both noisy [35] and reverberated [36] conditions. DOCCs 
aim to model the dynamics of the hair cells within the human ear 
and have a longer-term memory than the MFCCs. In DOCC 
processing, speech is analyzed by a gammatone filter bank (GFB) 
that splits the signal into subbands. These subbands are used as the 
forcing functions to an array of damped oscillators whose response 
is used as the acoustic feature. Inherently, the DOCCs perform a 
long-term filtering of bandlimited time domain signals and can 
filter our narrow-band noise and late-reverberation effects. Our 
studies on automatic speech recognition tasks have shown that 
DOCCs convincingly performs better than MFCC for both noisy 
and reverberated conditions, and this is the reason for using this 
feature in our experiments reported in this paper. 

The acoustic features were mean- and variance-normalized on a 
per-subject basis. We create a fixed length representation in the 
form of i-vectors (similar to our work in [37, 31]) for each 
conversation channel. The i-vector subspace had 30 dimensions;  
final i-vectors were length normalized before being used by the 
classifiers. 

4. DEPRESSION-SCORE PREDICTION MODEL 

For our initial experiments, we used support vector regression 
(SVR) [38] for predicting depression scores (in the Beck 
depression rating scale) from speech. The SVR training was 
performed by using the scikit-learn Python package; where the 
SVR had a polynomial kernel of order 20. Our initial exploration 
with different SVR kernels [37] revealed that the polynomial 
kernel was the optimal kernel for the given task, and hence we 
used it as the default kernel for all reported experiments.  

In addition to SVRs, we trained separate artificial neural 
networks (ANNs) for each feature type and training condition. The 
nets were trained using back-propagation with a scaled conjugate 
gradient algorithm, where the inputs were the 30D i-vectors, and 
the targets were the Beck depression rating scores. Note that the 
ANNs had linear activation for the input and output layers, with 
tan-sigmoid activation between the hidden layers. The performance 
of the ANNs was evaluated with Pearson’s product moment 
correlation (PPMC) coefficient, mean absolute error (MAE), and 
root mean squared error (RMSE), as these were the performance 
metrics used in AVEC-2014 [27].  

For the cross-corpus analysis, we trained ANN models by 
using the AVEC-2014 training data, and then employed the trained 
models to predict the depression scores for the VU-PTU dataset. 
We report the PPMC between the model-predicted depression 
scores and the HAM-D depression scores of the VU-PTU dataset.  

5. RESULTS AND DISCUSSION 

We examined effects of the conditions in Table 1 for both MFCCs 
and DOCCs, in each case finding an optimal feature size. Results 
using the SVR system are provided in Table 2. As shown, MFCCs 
with 17 cepstral features and DOCCs with 20 cepstral features 
gave better performance amongst the different cepstral dimensions 
explored in this work. Table 2 also shows that trend is somewhat 
noisy, which may have been due to the limited data size of the 
AVEC-2014 corpus. Note that the higher cepstral features capture 
source information (i.e., information relevant to the speaker’s 
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speech production system), whereas the lower cepstral features 
typically capture linguistic information. Interestingly, the Table 2 
results may indicate that higher cepstral coefficients help to obtain 
better depression-prediction performance as depression impacts the 
speaker’s production mechanism. Based on the Table 2 
observations, we use 17 cepstral features for MFCCs (MFCC17) 
and 20 cepstral features for DOCCs (DOCC20) in all following 
experiments. 
 

Table 1. Train/test conditions. X = 20, 10, 5. 
Condition Training Testing 

AVEC original original 
AVEC-mismatch-[X]dB original noisy@[X]dB 
AVEC-mismatch-reverb original reverberated 

AVEC-match-[X]dB noisy@[X]dB noisy@[X]dB 
AVEC-match-reverb reverberated reverberated 

 

Table 2. Depression-prediction performance for AVEC 
development data using MFCC and DOCC with different cepstral 
dimensions using SVR model.  
Feature Name #Cepstra MAE RMSE rPPMC 

MFCC 13 8.65 10.97 0.44 
MFCC 17 8.48 10.17 0.54 
MFCC 20 8.83 10.82 0.41 
MFCC 24 9.05 10.94 0.42 
DOCC 13 7.74 9.31 0.64 
DOCC 17 7.87 9.85 0.58 
DOCC 20 7.75 9.27 0.67 
DOCC 24 7.70 9.53 0.63 

 

Next, we performed mismatched and matched train-test 
evaluations on the AVEC data using MFCC17 and DOCC20. 
Figure 1 shows the line-plot of the PPMC obtained from matched 
and mismatched training-testing conditions at different SNR levels 
using the SVR model.  

 

 
 

Figure 1. PPMC (correlation) for different training-testing 
conditions with SVR models using MFCC17 and DOCC20 feature. 
The vertical axis represents PPMC; the horizontal axis represents 
different environmental conditions. 
  

In addition to SVRs, we also explored ANN models.  ANNs 
can model nonlinearity quite well and can perform complex 
functional mappings with a high degree of accuracy. Tables 3 and 
4 show the results obtained from the mismatched and matched 
evaluations using the SVR and ANN models. 

Tables 3 and 4 share several pieces of interesting information. 
First, the matched train-test conditions always give better 

performance over mismatched train-test conditions. For 
mismatched train-test conditions, the PPMC for MFCC goes down 
significantly compared to that in Table 2. Table 3 shows the impact 
of unseen environmental conditions, indicating how susceptible 
automated speech applications are to noise and reverberation. The 
mismatched reverberation condition seemed to be most detrimental 
for MFCCs, where the PPMC suffered an almost a 93% decrease, 
and the RMSE increased by 30% compared to the clean baseline in 
Table 2. Importantly, DOCCs did not demonstrate such 
catastrophic degradation in performance, despite witnessing a fall 
in PPMC and a rise in the MAE and RMSE scores. For both 
MFCC and DOCCs, the mismatched reverberation condition 
seemed to be the most challenging one. Table 4, on the contrary, to 
the mismatched results in Table 3, shows that both DOCCs and 
MFCCs perform reasonably well under matched training-testing 
conditions. MFCCs in the matched condition performed much 
better, demonstrating ~ 20% reduction in PPMC and ~ 11% 
increase in RMSE. Even in the matched condition, DOCCs 
performed better than the MFCCs, showing both higher PPMC and 
lower RMSE and MAE than the latter.  

 
Table 3. Depression-prediction performance for AVEC 
mismatched train-test conditions using MFCC and DOCC features 
with the SVR and ANN models. 

 Condition 
MAE RMSE rPPMC 

SVR ANN SVR ANN SVR ANN

M
F

C
C

17
 

Clean 8.48 8.43 10.47 10.14 0.54 0.56
AVEC-mismatch-20dB 9.60 11.33 12.36 14.02 0.21 0.23
AVEC-mismatch-10dB 10.26 10.92 12.41 12.95 0.20 0.19
AVEC-mismatch-5dB 10.44 11.05 12.53 13.54 0.18 0.07

AVEC-mismatch-reverb 11.60 12.12 13.27 14.34 0.04 0.08

D
O

C
C

20
 

Clean 7.75 7.11 9.27 8.67 0.67 0.69
AVEC-mismatch-20dB 8.28 7.76 10.23 9.50 0.58 0.62
AVEC-mismatch-10dB 8.66 8.66 11.26 11.46 0.42 0.47
AVEC-mismatch-5dB 9.83 9.48 11.85 11.89 0.41 0.43

AVEC-mismatch-reverb 9.30 9.00 11.47 11.19 0.40 0.45
 
Table 4. Depression-prediction performance for AVEC matched 
train-test conditions using MFCC and DOCC features with the 
SVR and ANN models. 

 Condition 
MAE RMSE rPPMC 

SVR ANN SVR ANN SVR ANN

M
F

C
C

17
 

Clean 8.48 8.43 10.47 10.14 0.54 0.56
AVEC-mismatch-20dB 8.90 8.76 11.29 10.80 0.43 0.50
AVEC-mismatch-10dB 8.62 8.46 11.30 11.04 0.40 0.45
AVEC-mismatch-5dB 9.46 9.10 11.52 11.39 0.42 0.40

AVEC-mismatch-reverb 8.56 8.90 10.86 11.17 0.47 0.47

D
O

C
C

20
 

Clean 7.75 7.11 9.27 8.67 0.67 0.69
AVEC-mismatch-20dB 8.41 8.27 10.50 10.09 0.50 0.56
AVEC-mismatch-10dB 8.13 8.29 10.57 10.20 0.49 0.54
AVEC-mismatch-5dB 9.13 8.29 11.07 10.26 0.48 0.53

AVEC-mismatch-reverb 8.63 8.57 10.68 10.47 0.49 0.52
 

The role of reverberation is noteworthy: in the mismatched 
condition, reverberation was detrimental for MFCCs; but for the 
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matched condition, its impact was smaller, and less severe than for 
noise. This finding suggests that reverberation may be effectively 
countered by properly training the models with reverberated data. 
Unlike noise, reverberation effects can be easily added to training 
data, as their characteristics are far less diverse than those of noise. 

Tables 3 and 4 also show that DOCC20 performed reasonably 
well under all conditions, with its worst performance on the 
AVEC-mismatch-reverb and AVEC-mismatch-5dB conditions, 
where PPMC was reduced by ~ 40% and 39%, respectively, 
compared to baseline, i.e., the clean condition results. Finally, the 
performances of all the systems were found to degrade with higher 
levels of noise (i.e., with lower SNR values), which is typically 
expected. 

 For our experiments using ANN models have used single 
hidden layer neural nets with 700 neurons in the hidden layer. 
Typically, adding an extra layer or two results in improving the 
performance [31] with a chance of data over-fitting given the 
limited size of the training corpus. The ANN results are also 
provided in tables 3 and 4, which show their performance under 
mismatched and matched train-test conditions. 

Comparing the results in tables 3 and 4 we can see that for 
most of the conditions, ANNs resulted in higher correlation score 
compared to its SVR counterpart, which is in line with our earlier 
observations in [31]. For DOCC features the ANNs in general gave 
better performance than SVRs, even for noisy and reverberated 
conditions and for MFCCs the trend was opposite. This may 
indicate that different features may behave differently with 
different modeling strategies and each such combination may 
capture complementary information that can potentially benefit 
late fusion of systems. In general, matched condition results are far 
better than the mismatched ones, indicating that the magnitude of 
the mismatch between training-testing conditions effect the 
performance of the models where the performance degradation is 
somewhat proportional to the degree of mismatch. We also 
observed that the DOCCs performed better than MFCCs. 

We also analyzed performance of the matched and mismatched 
train-test datasets using ANN models on the spontaneous- and 
read-speech parts of the AVEC dev data, with the results given in 
Table 5. Table 5 indicates that even under noisy and reverberated 
conditions, spontaneous speech gave better performance compared 
to read speech. Note that the models were trained with both 
spontaneous and read speech, as we observed performance 
degradation when the models were trained with either of them 
separately. That finding may be due to having less data for model 
training when selecting one part over the other.  

Next, we explore how the systems behave in an entirely 
mismatched scenario, where the recording conditions, language 
and content are different between the training and testing data.  

 

Table 5. Performance differences between read and spontaneous 
speech for DOCC20 features using ANN models. 

Condition 
MAE RMSE rPPMC 

Read Spont. Read Spont. Read Spont.
AVEC-mismatch-20dB 8.03 7.50 9.82 9.17 0.61 0.65 
AVEC-mismatch-10dB 8.71 8.61 12.04 10.84 0.46 0.50 
AVEC-mismatch-5dB 10.82 8.15 13.16 10.46 0.33 0.55 

AVEC-mismatch-reverb 9.19 8.82 11.76 10.60 0.42 0.50 
AVEC-match-20dB 8.59 7.96 10.72 9.41 0.47 0.64 
AVEC-match-10dB 8.49 8.07 10.60 9.77 0.49 0.59 
AVEC-match-5dB 8.50 8.15 10.40 9.98 0.47 0.52 

AVEC-match-reverb 9.01 8.13 10.60 9.77 0.49 0.59 
 

For that purpose we set up a cross-corpus analysis, in which we 
trained ANN models using the AVEC training data (without noise 
or reverberation), and then used the noisy and reverberated VU-
PTU data for evaluation. Note that the AVEC data contains speech 
spoken by German speakers in a residential setup, whereas the 
VU-PTU data contains speech by English speakers in a clinical 
facility. Table 6 shows the results from the cross-corpus analysis. 

 

Table 6. Cross-corpus depression-prediction performance for ANN 
models trained with AVEC data and evaluated on VU-PTU data 
using MFCC and DOCC features. 

 Test Condition MAE RMSE rPPMC 

M
F

C
C

17
 VU-PTU 8.688 10.123 0.177 

VU-PTU+noise @15dB 10.665 12.577 0.125 
VU-PTU+noise @5dB 9.592 11.450 0.112 

VU-PTU+reverb 11.110 13.205 0.049 

D
O

C
C

20
 

VU-PTU 7.265 8.789 0.449 
VU-PTU+noise @15dB 9.102 11.646 0.186 
VU-PTU+noise @5dB 8.187 10.630 0.185 

VU-PTU+reverb 9.041 11.017 0.365 
 

Note that the MAE and RMSE do not provide meaningful 
quantitative analysis regarding performance here, as the predicted 
depression scored from the ANN outputs (in Beck’s scale) and the 
target depression scores of the VU-PTU data (HAM-D ratings) are 
quite different. However, the MAE and RMSE hint at how closely 
the predicted and target depression scores are from the cross-
corpus analysis. Table 8 shows that DOCCs performed much better 
overall than MFCCs. Interestingly for the cross-corpus analysis, 
MFCCs did not perform as poorly as they did on the in-corpus 
analysis of the 5 dB noisy condition. As shown, DOCCs performed 
quite well under reverberated conditions, indicating the resilience 
of this feature set under reverberant distortion. 

6. CONCLUSION 

We reported a series of experiments for predicting depression 
scores from speech, using the AVEC-2014 corpus under matched 
and mismatched conditions, and including controlled noise and 
reverberation corruption at different levels. Results showed clearly 
that selecting robust features (in this case, DOCCs over the 
standard MFCCs) adds resilience to system performance. ANNs 
were found to be more robust than SVRs. In an analysis of 
speaking style we found that spontaneous speech gave better 
performance than read speech. This finding was observed even for 
noisy and reverberated conditions but deserves further study given 
differences in data sizes. Finally, we found that noise usually 
impacts cross-corpus performance more adversely than does 
reverberation. We demonstrated that using suitable robust features 
and modeling strategies mitigates performance degradation from 
varying background conditions. In future work, we intend to 
explore noise effects in naturalistic data, feature optimization, 
feature fusion, and adaptation techniques to find ways to improve 
robustness of automatic depression-prediction models.   
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