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ABSTRACT

Human’s judgment has been shown to be thin-sliced in na-
ture, i.e., accurate perception can often be achieved for a
short duration of exposure to expressive behaviors. In this
work, we develop a mutual information-based framework to
select the most emotion-rich 20% of local multimodal behav-
ior segments within a 3-minute long affective dyadic inter-
action in the USC CreativeIT database. We obtain a predic-
tion accuracy of 0.597, 0.728, and 0.772 (measured by Spear-
man correlation) for an actor’s global (session-level) emotion
attributes (activation, dominance, and valence) using Fisher-
vector encoding and support vector regression built on these
20% of multimodal emotion-rich behavior segments. Our
framework achieves a better accuracy over using the interac-
tion in its entirety and a variety of other data selection baseline
methods by a significant margin. Furthermore, our analysis
indicates that the highest prediction accuracy can be obtained
using only 20% - 30% of data within each session, i.e., addi-
tional evidences for the thin-slice nature of affect perception.

Index Terms— thin-slice theory, behavioral signal pro-
cessing, emotion recognition, multimodal signal processing

1. INTRODUCTION

Thin-slice theory of judgment [1, 2] states that accurate per-
ception of another person’s attributes, e.g., personality [3],
intelligence [3], affect [4], and even negotiation outcome
[5], can be obtained within a short duration of interactions;
these personal attributes are often reflected in the multimodal
behavior manifestation [6], e.g., speech, facial expressions,
and body movements. Psychologists have analyzed this phe-
nomenon in various interaction scenarios; for example Am-
bady et al. found that there exists an association between
first impressions and sale’s effectiveness [7], and Houser
et al. found a similar conclusion in successful speed dating
[8]. Recently, there has been an emerging research effort cen-
tered around developing algorithms to automate human’s per-
ceptual judgment. Some notable applications exists in sys-
tems for emotion detection [9, 10], social behaviors predic-
tion [11, 12], and subjective attributes recognition [13, 14].
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Behavioral signal processing (BSP) is one such research
fields that aims at providing objective computational frame-
works for domain experts in order to facilitate their decision-
making process [15]. In BSP-related application domains
such as mental health and education, it is common for domain
experts make a global and holistic perceptual judgments af-
ter observing long-durational audio-video data. For example,
in couple therapy, trained experts annotate couples’ behav-
iors after watching 10-minute long interactions [16], and in
educational training program, coaching principals grade the
pre-service principals’ speech after listening to their 3-minute
long impromptu talk [17]. Knowing that there exists a thin-
slice nature of human’s perception, identifying which salient
slice of behaviors that contributes to the final overall percep-
tion becomes critical in advancing the design of diagnostic in-
struments/training materials, the development of efficient en-
gineering recognition algorithms, and even the understanding
of human perceptual mechanisms [18].

Prior works in BSP have utilized computational frame-
works, such as multiple instance learning [19] and sequen-
tial probability ration test [20], to locate salient behavior seg-
ments in order to perform automated session-level behavioral
coding. In this work, we build upon this idea to recognize
global (session)-level affective attributes (valence, activation,
dominance) by identifying the behavior segments that are lo-
cally emotion-rich within a mutual information framework.
In this work, we use the USC CreativeIT database [21], where
each actor in a dyadic play is annotated with both local time-
continuous (frame-level) and global session-level emotion at-
tributes. Our recognition system for global emotion attributes
leverages the availability of frame-level emotion annotation
to identify the informative portions of behavior segments.

Our proposed framework utilizes only 20% of the most
emotion-rich multimodal behavior segments in each session
and obtains a prediction accuracy of 0.597, 0.728, and 0.772
(measured by Spearman correlation) for global activation,
dominance, and valence, respectively. Comparing to using
the data in its entirety, our framework improves the correla-
tion by 0.234, 0.09, 0.244 absolute; comparing to using the
segments associated with the most-frequent-seen local emo-
tion attribute, our framework also achieves an improvement of
0.255, 0.174, and 0.235 (absolute). Our analysis also shows
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that the highest recognition accuracy can be obtained by using
approximately 20% - 30% of the entire session, which further
reinforces the nature of thin-slice judgment of affect.

The rest of the paper is organized as follows: section 2
describes about research methodology, section 3 details the
experimental setup and results, and section 4 concludes with
discussion and future works.

2. RESEARCH METHODOLOGY
2.1. Database
We use the USC CreativeIT database for the present work
[21]. This database includes dyadic improvisations based on
an established theatrical acting technique called Active Anal-
ysis [22] in order to help elicit natural affective interactions.
The behavior modalities included in the database are audio-
recording from lapel microphones and full body motion cap-
ture on each actor (i.e., a recording of 45 markers’ (x, y, z)
coordinates using 12 Vicon cameras at 60 frames per second).
There are a total of 8 pairs of actors (16 actors in total) with
50 total interaction sessions. Each actor in a session is anno-
tated with both local time-continuous and global session-level
emotion labels (a total of 100 samples of emotion annotations
available). Emotion labels of interest are valence, dominance,
and activation. Local time-continuous label for each attribute
takes on a real value between [−1, 1] sampled at every 10 ms
frame. Global emotion labels are assigned at the session-level
for each actor and take on an integer value between [1, 5].
There are at least 3 annotators per session.

In this work, there are a total of 100 full body motion cap-
ture data, 90 audio data, and 90 samples with both audio and
motion capture. We compute the average of annotator scores
for both local time-continuous and global session-level emo-
tion labels to serve as our ground truths in our experiments.

2.2. Locally Emotion-Rich Behavior Segments
A complete workflow of our computational framework in
identifying locally emotion-rich behavior (thin-slice) seg-
ments is illustrated in Figure 1. The procedure can be sum-
marized in the following steps:

1. Multimodal behavior feature extraction and clustering
representation using Gaussian mixture model (X)

2. Local time-continuous emotion annotation discretiza-
tion per frame (Y )

3. Partition the session for each actor into 100 equally-
spaced non-overlapping segments (≈ 2 seconds each)

4. Compute mutual information, I(X;Y ), between
Xi and Yi, ∀ i ∈ [ 1, 100]

5. Select top K segments to form the locally emotion-rich
behavior segments (i.e., relevant thin-sliced behaviors)

2.2.1. Multimodal Behavior Feature Representation
The two modalities of behavior features that we extract cor-
respond to vocal and body language information. 13 mel-
frequency cepstral coefficients (MFCCs), including deltas and

delta deltas, are extracted to quantify vocal information of
each actor (a total of 39 vocal features).

We adopt the similar body language feature extraction
method from a previous work done by Metallinou et al. on
the same database [23]. Body language features are extracted
in a geometric manner from the coordinates recorded on the
45 motion capture markers. We extract a total of 95 fea-
tures per frame quantifying information such as individual
body movement of the actor and interactive movement of
the actor with his/her interlocutor. The choices of features
are designed to capture behaviors such as looking at the in-
terlocutor, approaching, touching, as well as body postures
such as looking down and hand gestures. Out of the 95 fea-
tures, 70 features are identical to the previous work (details
are in [23]). We additionally compute 25 more features: 14
acceleration-based features (we compute acceleration for all
velocity-based features), 5 distance-based features (left/right
hand to head, left/right hand to torso, and left leg to right
leg), 3 features of head’s coordinates (x, y, z), and 3 angle-
based features (angle between left and right leg, angle be-
tween left/right leg and global origin).

Lastly, we perform GMM (m = 128) on each behavior
modality separately to quantize individual behavior streams
into m clusters at each frame, i.e., denoted as X , where X
can take on value between 1 to m.
2.2.2. Selection of Top K Emotion-Rich Segments
We first discretize the original local time-continuous emotion
attributes (Ei), where i indicates {valence, dominance, and
activation}, into 5 quantized levels (Y ):

• Level 0: −1.0 <= Ei < −0.6
• Level 1: −0.6 <= Ei < −0.2
• Level 2: −0.2 <= Ei < 0.2
• Level 3: 0.2 <= Ei < 0.6
• Level 4: 0.6 <= Ei <= 1.0

Then, we split each actor’s behavior data into 100 equally-
spaced segments. We can, hence, compute the mutual in-
formation easily between Xi and Yi, where i indicates the
segment index, to quantify the amount of information jointly
present in the behavior expression and local emotion rating.

I(Xi, Yi) =
∑
Y

∑
X

p(Xi, Yi) log
p(Xi = x, Yi = y)

p(Xi = x)p(Yi = y)

Finally, we rank I(Xi, Yi) for each actor in that session and
retrieve the top K number of i’s to be the locally emotion-rich
behavior segments.

2.3. Global Affect Recognition
Section 2.2 describes our approach in identifying sub-portions
of data to be used to train global emotion recognition sys-
tem. The process can be thought as a data reduction/selection
process within each session. After retrieving K number of
segments, we concatenate the original behavior features, i.e.,
39 and 95-dimensional feature vector, from all of the chosen
segments to represent that particular actor’s behaviors.
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Fig. 1: A complete workflow of our mutual information-based framework for identifying locally emotion-rich behavior seg-
ments as our thin slice representation

Since each interaction has different lengths, the total num-
ber of frames selected varies across different sessions. In this
work, we employ Fisher-vector encoding method to map the
varying-length sequence of features into fix-length vector of
features [24, 25]. Fisher-vector encoding is operated by first
trains an overall GMM and further calculates the gradient vec-
tor using FIM (Fisher Information Matrix) approximation to
describe the direction changed needed for the trained GMM
parameters to obtain a better fit on the data of interest, i.e.,
individual actor’s sequence of feature vector per session.

We use support vector regression (SVR) recognize the
global emotion attributes. The final fusion between audio and
body language information is done at the decision-level. The
final predicted emotion value, EpredAB , is the following,

EpredAB = a× EpredA + (1− a)× EpredB

where EpredA refers to prediction using audio features, and
EpredB refers to prediction using body language features.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Experimental setup
We evaluate our global emotion recognition accuracy using
leave-dyad-out cross validation and measure the accuracy us-
ing Spearman correlation. We select K = 20 segments of 1%
data partition (approximately 35 - 40 seconds total worth of
data) for each actor in the session as our locally emotion-rich

behavior segments to perform the prediction task. The num-
ber of mixtures used for Fisher-vector encoding is chosen em-
pirically for each emotion attribute separately. We compare
against eight different baseline models (listed below).

I. Entire Session: Use 100% of data from each session
II. Random Sample 20%: Randomly sample 20% of

each session
III. Five-ordered Segments: Split each session into five

parts in sequence, and average the prediction results
from these five parts

IV. Random Five-ordered Segments: Same as III, but
randomly select only one from the five parts

V. Random 20×1% Sample: Randomly sample 20 seg-
ments of the 1% data partition

VI. Mean of Local Labels: Select the data portion corre-
sponds to the mean values (rounded to the nearest inte-
ger) of quantized local time-continuous emotion labels
(≈ 60% of data in each session)

VII. Mode of Local Labels: Same as VI, but choose data
corresponds to the mode (≈ 60% of each session)

VIII. Median of Local Labels: Same as VI, but choose data
corresponds to the median (≈ 60% of each session)

Method I is the conventional method to perform prediction,
method II - V are based solely on various random approaches
of data reduction, and method VI - VIII leverage the human
annotated local time-continuous labels for data selection, sim-
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Table 1: Summary of global emotion prediction attributes results for 9 different methods (measured by Spearman correlation)
for audio, body language, and fusion model (all p-values are less than 10−5)

Audio
I. II. III. IV. V. VI. VII. VIII. Proposed

Activation 0.251 0.240 0.323 0.247 0.207 0.302 0.261 0.294 0.382
Dominance 0.260 0.202 0.224 0.264 0.174 0.210 0.207 0.238 0.545

Valence 0.281 0.208 0.119 0.041 0.204 0.259 0.235 0.258 0.521
Body Language

I. II. III. IV. V. VI. VII. VIII. Proposed
Activation 0.380 0.373 0.244 0.187 0.179 0.411 0.363 0.395 0.604
Dominance 0.656 0.643 0.366 0.472 0.581 0.608 0.613 0.629 0.685

Valence 0.547 0.471 0.351 0.110 0.371 0.453 0.525 0.449 0.755
Fusion Model

I. II. III. IV. V. VI. VII. VIII. Proposed
Activation 0.363 0.398 0.359 0.216 0.230 0.398 0.342 0.381 0.597
Dominance 0.638 0.633 0.416 0.490 0.586 0.549 0.554 0.603 0.728

Valence 0.528 0.430 0.359 0.223 0.278 0.432 0.537 0.459 0.772

ilar to our proposed method.

3.2. Results and Discussions
Table 1 summarizes our global emotion attributes predic-
tion results using audio-only, body language-only, and fusion
model. There are several major points to note. The first is
that the fusion model achieves the best accuracy, i.e., 0.728,
and 0.772 for, dominance, and valence, respectively, signify-
ing the importance of multimodal behavior modeling. Fur-
thermore, our proposed mutual information-based method to
select locally emotion-rich behavior segments obtain the best
accuracy when comparing all other eight different baseline
models. In specific, by using only 20% of emotional-rich be-
havior segments, we obtain an 0.234, 0.09, and 0.244 absolute
improvement in the correlation comparing to using behavior
data from the session in its entirety.

Another interesting point to note is that method VI - VIII
also leverages local time-continuous human annotation to per-
form data selection. The mean, median, and mode values
of local time-continuous (frame-level) emotion label by itself
correlate quite well with the global-level emotion attributes,
e.g., mode value of local time-continuous emotion attribute
correlates 0.611, 0.804, and 0.846 with global emotion at-
tributes for activation, valence, and dominance, respectively.
However, by selecting their corresponding behavior segments
to perform the global recognition task, unlike our proposed
framework, there is no significant improvement over just us-
ing the session in its entirety. This result underscores an im-
portant feature of our mutual information framework, which
considers the joint informational content between local emo-
tional judgment and expressive behaviors.

Lastly, we plot the different percentages of data selected
in the fusion model of our framework and their prediction ac-
curacies in the three global emotional attributes in Figure 2. It
is interesting to note that it only requires about 30%, 30%, and
20% (valence, dominance, and activation) of the each session
to obtain the best prediction accuracies. This result further
strengthens the thin-slice theory of affect judgment.

Fig. 2: A plot between different percentages of selected data
in each session and global emotion attributes (valence, activa-
tion, and dominance) prediction accuracies

4. CONCLUSIONS AND FUTURE WORK
In this paper, we present a mutual information-based frame-
work to identify locally emotion-rich multimodal behav-
ior segments to recognize global (session-level) emotion at-
tributes in the USC CreativeIT database. By using just 20%
of each session, we obtain an significant improvement over
using the entire session. Our results further demonstrate that
only approximately 20 - 30% is needed of behavior data in
each session to achieve the best overall prediction - reinforc-
ing the thin-sliced nature of human perceptual judgment.

One of our immediate future works is to derive and incor-
porate the local time-continuous emotion recognition jointly
within this framework to complete an end-to-end system for
automatic identification of emotion-rich behavior segments
for global emotion attributes’ prediction. Furthermore, we
will also investigate these thin slices of behaviors to under-
stand their underlying reasons for triggering human percep-
tion of affect when observing long-durational interactions.
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Shrikanth Narayanan, “Paralinguistics in speech and
languagestate-of-the-art and the challenge,” Computer Speech
& Language, vol. 27, no. 1, pp. 4–39, 2013.

[15] Shrikanth Narayanan and Panayiotis G Georgiou, “Behav-
ioral signal processing: Deriving human behavioral informat-
ics from speech and language,” Proceedings of the IEEE, vol.
101, no. 5, pp. 1203–1233, 2013.

[16] Matthew P Black, Athanasios Katsamanis, Brian R Bau-
com, Chi-Chun Lee, Adam C Lammert, Andrew Christensen,
Panayiotis G Georgiou, and Shrikanth S Narayanan, “Toward
automating a human behavioral coding system for married cou-
ples interactions using speech acoustic features,” Speech Com-
munication, vol. 55, no. 1, pp. 1–21, 2013.

[17] Shan-Wen Hsiao, Hung-Ching Sun, Ming-Chuan Hsieh, Ming-
Hsueh Tsai, Hsin-Chih Lin, and Chi-Chun Lee, “A multimodal
approach for automatic assessment of school prinicipals’ oral
presentation during pre-service training program,” in Inter-
speech, 2015, p. in press.

[18] Dana R Carney, C Randall Colvin, and Judith A Hall, “A thin
slice perspective on the accuracy of first impressions,” Journal
of Research in Personality, vol. 41, no. 5, pp. 1054–1072, 2007.

[19] Athanasios Katsamanis, James Gibson, Matthew P Black, and
Shrikanth S Narayanan, “Multiple instance learning for classi-
fication of human behavior observations,” in Affective Comput-
ing and Intelligent Interaction, pp. 145–154. Springer, 2011.

[20] Chi-Chun Lee, Athanasios Katsamanis, Panayiotis G Geor-
giou, and Shrikanth Narayanan, “Based on isolated saliency
or causal integration? toward a better understanding of hu-
man annotation process using multiple instance learning and
sequential probability ratio test.,” in INTERSPEECH, 2012.

[21] Angeliki Metallinou, Zhaojun Yang, Chi-chun Lee, Carlos
Busso, Sharon Carnicke, and Shrikanth Narayanan, “The usc
creativeit database of multimodal dyadic interactions: from
speech and full body motion capture to continuous emotional
annotations,” Language Resources and Evaluation, pp. 1–25,
2015.

[22] Sharon Marie Carnicke, “The knebel technique: active analysis
in practice,” Actor Training, pp. 99–116, 2010.

[23] Angeliki Metallinou, Athanasios Katsamanis, and Shrikanth
Narayanan, “Tracking continuous emotional trends of partici-
pants during affective dyadic interactions using body language
and speech information,” Image and Vision Computing, vol.
31, no. 2, pp. 137–152, 2013.

[24] Florent Perronnin and Christopher Dance, “Fisher kernels on
visual vocabularies for image categorization,” in Computer Vi-
sion and Pattern Recognition, 2007. CVPR’07. IEEE Confer-
ence on. IEEE, 2007, pp. 1–8.

[25] Florent Perronnin, Jorge Sánchez, and Thomas Mensink, “Im-
proving the fisher kernel for large-scale image classification,”
in Computer Vision–ECCV 2010, pp. 143–156. Springer, 2010.

5794


