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ABSTRACT

While most pattern recognition approaches are designed and trained
with clearly defined reference labels, there are a few new applica-
tions working with ambiguous ones. Since the linear discriminant
analysis (LDA) is one of the most utilized methods in pattern recog-
nition to reduce the dimensionality of feature vectors, typically in-
creasing the robustness of the features, we propose in this work a
modification of the LDA in order to be able to handle ambiguous
reference labels in a soft-decision way. In the field of social signal
processing (here: emotion recognition) we demonstrate that using a
soft accuracy measure evaluating the classifier’s confidence output
by means of a soft-labeled emotional speech database really pro-
vides a degree of similarity to (naturally ambiguous) human votes.
The adaptation of our classifier to such soft accuracy measure takes
place by a retraining w.r.t. the human vote distribution. Applying
this soft accuracy measure to emotion recognition with ambiguous
reference labels both retraining the classifier and using the new soft
LDA method leads to around 22% relative increase of accuracy.

Index Terms— linear discriminant analysis, ambiguous labels,
ground truth, social signal processing, emotion recognition

1. INTRODUCTION

In pattern recognition two general approaches are distinguished: Su-
pervised and unsupervised classification [1]. The first method clas-
sifies a pattern in accordance with a number of predefined classes,
whereas the second approach has the objective to at first form appro-
priate classes itself and allocate the patterns to these so-far unknown
classes. For both of them it is often the case that humans are able to
label or classify the considered patterns unambiguously.

However, in recent years a new field of pattern recognition has
received more and more attention: Social signal processing. In con-
trast to most other application fields of pattern recognition, this field
deals with human interpretations of the behavior of people regarding
their interactions (e.g., addressing, active listening), internal states
(e.g., interest, emotions), personality (e.g., dominance) or social re-
lations [2, 3]. This field of pattern recognition differs in one specific
aspect from more classical recognition applications: It reveals con-
siderable ambiguity in class assignment by humans. Since the per-
ception and interpretation of human behavior varies from person to
person, it is sometimes impossible to obtain an unambiguous ground
truth or labels for this discipline.

Taking speech emotion recognition as an example, we find var-
ious studies about listeners’ different perception of emotions from
recorded speech, e.g., [4, 5]. Nevertheless, besides the consideration

of emotions in a multidimensional continuous emotion space [6], the
most familiar method of describing emotions is still to use a small
number of discrete classes [6–8]. For this purpose, speech emotion
databases are generally labeled by the majority vote of a number of
human raters who evaluate the observed emotions by means of pre-
defined classes. Accordingly, the classifiers are trained and evaluated
with these henceforth called hard decision (HD) emotion labels, or
hard ground truth.

Due to the fact that the interpretation of humans represents the
only true reference labels for social signal processing, in previous
work [9] we proposed a new evaluation methodology: By means of
an emotional speech database with emotions simulated by actors, we
were able to confirm with a perception test that listeners’ perception
of emotions from recorded speech varies like observed in [4]. Hence,
we created a soft decision (SD) or soft ground truth consisting of the
probability distribution of all votes of all raters and defined a new soft
accuracy measure for such social signal processing approaches (see
Section 2). This evaluates the recognition results not on the basis of
a single majority vote, but effectively takes into account all votes of
all raters in order to obtain a more human-like evaluation methodol-
ogy. However, to obtain a smaller and more robust feature vector a
conventional linear discriminant analysis (LDA) was employed, still
reflecting the majority votes of the class labels.

The conventional LDA has already been used in a wide range
of fields with different modifications and extensions. In automatic
speech recognition, several approaches for class assignment exist,
since this is not obvious in the case of employing an LDA together
with continuous hidden Markov models and Gaussian mixture mod-
els [10–14]. Furthermore, in [15] an adaptive LDA is proposed,
which considers individual class distributions, whereas other ap-
proaches focus on one specific kind of class distribution (e.g., on a
heteroscedastic class distribution [16]). In the field of face recog-
nition, a local LDA was proposed to handle multi-class nonlinear
classification problems by applying a set of locally linear transforms.
In this process, a soft clustering takes place whereby each data point
belongs to each of the clusters with some posterior probability [17].

In order to break completely away from a hard ground truth, we
pick up the idea of soft clustering [17] and propose in this paper a
soft linear discriminant analysis (SLDA), which is part of a two-step
approach towards processing ambiguous classes: First, we apply a
neural network (NN), taking the probability distribution of our new
soft ground truth as target signal in training. Moreover, all outputs of
the NN are considered and adjusted as posterior probability distribu-
tion for the evaluation with the soft accuracy measure. Second, we
derive and employ our SLDA, which analyzes the features not any
longer on the basis of the hard ground truth, but on the soft one. This

5785978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



enables us to employ both training and test of the NN classifier in a
soft-decision fashion, and also evaluation is performed by means of
a soft accuracy measure. As a result we obtain a more human-like
labeling, classification, and evaluation.

The rest of the paper is organized as follows: Accuracy defini-
tions for both hard and soft decision are revisited in Section 2. This
is followed by the mathematical model of the suggested soft linear
discriminant analysis in Section 3. Section 4 describes an example
application in the field of emotion recognition. An evaluation of the
old and the new training method as well as the LDA and the SLDA
with respect to the soft accuracy measure is examined in Section 5.
Finally, conclusions are drawn in Section 6.

2. ACCURACY DEFINITIONS

In order to deal with ambiguous reference labels, we make use of a
particular accuracy measure [9], which we will briefly revisit here.

Still in many applications of pattern recognition there exists a
fixed ground truth, which consists of an unambiguous assignment to
a class. For that reason one often targets a hard decision output of
the classifier, which is then compared to the ground truth. It results
in the hard accuracy measure

ACCHD = ACC = 1− E

R
, (1)

with E = S + I + D being the sum of substitutions, insertions,
deletions, respectively, and R being the number of instances in the
ground truth to be recognized. Note that in sentence-based emotion
recognition we often have E = S, and I = D = 0.

However, as already mentioned in Section 1, there is an increas-
ing number of applications that do not have a clearly defined ground
truth with hard decisions. In accordance with the human reference
it requires a soft evaluation method considering classifier confidence
outputs and comparing them to the soft ground truth. This leads then
to the soft accuracy measure [9]

ACCSD = 1− 1

2R

R∑
t=1

N∑
i=1

∣∣∣P̂t,i − Pt,i

∣∣∣ , (2)

whereby the posterior probability P̂t,i characterizes the classi-
fier’s confidence output in terms of the recognized instance t ∈
{1, 2, . . . , R} and class i ∈ {1, 2, . . . , N}with N being the number
of classes, while Pt,i describes the raters’ distribution for instance t

and class i, fulfilling
∑N

i=1 Pt,i = 1.

3. (SOFT) LINEAR DISCRIMINANT ANALYSIS

In the following section, we describe the newly proposed SLDA,
sketching first the classical LDA according to [18].

The LDA [18, 19] pursues the objective of reducing the dimen-
sionality from a given feature vector in consideration of the best dis-
crimination among N defined classes. This is realized by using a
linear transformation from vector x ∈ Rdx to vector y ∈ Rdy ,
whereby dy < dx. This mathematical operation can be expressed
by

y = ATx, (3)
with {}T being the transpose of the rectangular matrix A ∈
R(dx×dy), which column vectors are linearly independent. In order
to formulate a criterion of class separability, some statistical scatter
matrices (within-class, between-class, or mixture scatter matrix) are
used, which consist of two basic statistical definitions: The mean
value and the covariance. The global mean value is given by

µ =
1

T

T∑
t=1

xt, (4)

with the feature vector xt, t ∈ {1, 2, . . . , T}, and T being the num-
ber of instances in some training data, and the class-specific mean
value

µi =
1

Ti

Ti∑
t=1

xt,i, (5)

with Ti being the number of instances of class i. By means of the
class-assigned feature vector xt,i the class-specific covariance ma-
trix can be written as

Σi =
1

Ti− 1

Ti∑
t=1

(xt,i − µi) · (xt,i − µi)
T. (6)

Note, that the normalization term Ti− 1provides an unbiased esti-
mate [18]. Furthermore, we need the probability of class i, simply
expressed by

Pi =
Ti

T
. (7)

With the aid of these components the three desired scatter matrices
can be defined: The within-class scatter matrix

Sw =

N∑
i=1

Pi ·Σi (8)

describes the distribution of the samples around their class-specific
mean value, whereby the number of classes is characterized by N .
In contrast, the distribution of the class-specific mean values around
the global mean value is represented by the between-class scatter
matrix, which is expressed by

Sb =

N∑
i=1

Pi · (µi − µ) · (µi − µ)T. (9)

Finally, the addition of these two scatter matrices results in the mix-
ture scatter matrix

Sm = Sw + Sb =
1

T− 1

T∑
t=1

(xt − µ) · (xt − µ)T, (10)

which is the covariance matrix of all samples regardless of the class
assignments.

A criterion for class separability based only on the first two scat-
ter matrices is given by

J1 = tr(S−1
w Sb)→ max, (11)

with tr() being the trace of a quadratic (n×n)-matrix. In order to
obtain well-separated classes, the goal is to maximize the between-
class distances while minimizing the within-class distances. This
problem of optimization can be solved by means of the eigenvalue
problem by which we obtain N−1 non-zero eigenvalues of S−1

w Sb

[18]. It follows that we can map any xt onto an (N−1)-dimensional
subspace spanned by the N −1 eigenvectors corresponding to the
eigenvalues that are non-zero. So far the state of the art.

Now we assume to have available soft reference labels. As a
result, a kind of class combination depending on the distribution of
the labels over the classes is possible and the more the distribution
over the classes is equal, the more is the separability between the
classes reduced.

For the derivation from the classical LDA to the new soft LDA
(SLDA) we expand the class-specific terms by the probability of the
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class assignment. In the special case of unambiguous reference la-
bels, the SLDA shall correspond to the classical LDA. Now, the de-
termination of the soft-class specific mean value considers all feature
vectors weighted with their probability belonging to class i. This can
be expressed by (compare to (5))

µSD
i =

T∑
t=1

xt · Pt,i

T∑
t=1

Pt,i

, (12)

with the soft ground truth Pt,i. The number of class instances Ti is
replaced by the sum over all Pt,i. Consequently, the soft probability
of class i changes to (compare to (7))

PSD
i =

1

T

T∑
t=1

Pt,i. (13)

The last modification affects the class-specific covariance matrix (6).
Its soft equivalent results in

ΣSD
i =

T∑
t=1

Pt,i · (xt − µSD
i ) · (xt − µSD

i )T

−1 +
T∑

t=1

Pt,i

. (14)

Since the global mean value does not depend on the distribution of
the classes, it corresponds to the soft global mean value:

µSD =

N∑
i=1

PSD
i · µSD

i =
1

T

T∑
t=1

xt = µ (15)

Now all necessary definitions are given and we obtain the modified
soft scatter matrices, whereby here again the mixture scatter matrix
does not change, since it does not depend on the distribution of the
classes:

SSD
w =

N∑
i=1

PSD
i ·ΣSD

i (16)

SSD
b =

N∑
i=1

PSD
i · (µSD

i − µ) · (µSD
i − µ)T (17)

SSD
m = SSD

w + SSD
b =

1

T

T∑
t=1

(xt − µ) · (xt − µ)T = Sm. (18)

4. APPLICATION: EMOTION RECOGNITION

One example field of application for the proposed SLDA is auto-
matic speech emotion recognition. We briefly introduce the idea
of soft reference labels in this field as well as a particular emotion
recognition approach, which we will use for subsequent evaluation.

An emotion is a spontaneous reaction to an external stimulus
that causes a change in physiological parameters and becomes ob-
servable, e.g., when these physiological parameters involve articula-
tory and phonatory processes. On the receiver side it is a matter of
interpretation: Listeners’ recognition and interpretation of emotions
from recorded speech vary substantially [4]. The latter motivated us
to rethink the standard annotation of emotional databases: In gen-
eral the majority vote of the raters is reflected in the transcriptions
of emotional speech. In order to target a human-like recognition of
emotions, we believe that the ground truth as provided with an emo-
tional speech database should not contain majority votes, but instead
provide the underlying distribution of the labels in every case.

Human votes
fea dis hap bor neu sad ang

In
te

nd
ed

em
ot

io
n

fea 88.4 2.2 4.3 0.0 2.2 0.2 2.7

dis 3.3 81.1 0.4 1.8 1.8 11.6 0.0

hap 3.1 1.4 84.0 0.0 7.0 1.2 3.3

bor 0.0 0.0 0.0 95.7 3.3 1.0 0.0

neu 0.0 0.0 1.3 5.3 92.6 0.4 0.4

sad 4.6 0.0 0.0 16.9 9.7 68.8 0.0

ang 0.0 0.1 0.1 0.1 0.0 0.1 99.6

Table 1. Average agreement results (in %) for the seven emotions
(fear, disgust, happiness, boredom, neutral, sadness and anger) from
the Berlin Database [20]. The ordinate denotes the intended emo-
tion, whereas the abscissa represents the votes of the subjects in our
perception test.

In our example application approach, we employ the feature ex-
traction algorithm according to the ETSI Extended Advanced Front-
End Recommendation [21] with a frame shift of 10 ms to obtain
13 mel frequency cepstral coefficients, one log-energy parameter,
a pitch value, and the 1st- and 2nd-order derivatives of these. In
addition, a voice activity detection flag is computed [22] resulting
in a total of 46 frame-based features. Altogether we obtained 105
utterance-based statistical features, summarized in a feature vector
x (further details to the feature composition can be found in [9]).
We normalize these features and transform them with the SLDA re-
garding the N = 7 emotion classes [20] into a more robust vector
y of length six, which is the input to the NN. After applying the
NN, the output has to be adjusted to become a posterior probabil-
ity confidence P̂t,i. Concerning this we set all negative values to
zero followed by a normalization to fulfill the stochastic constraint;
a softmax operation could have been used equally.

Since in this work we focus on the (mathematical formulation
of the) SLDA, we employ a very simple feedforward neural network
(easy to resimulate for the reader, not intended for setting new bench-
marks) consisting of one hidden layer with ten hidden layer neu-
rons, six inputs and seven outputs (one for each emotion state). The
network is trained with a quasi-Newton backpropagation algorithm,
whereby the optimization of the feedforward network is performed
with a mean absolute error function, in line with the definition of (2).

5. EMPIRICAL VALIDATION

We now compare LDA and SLDA with respect to the soft accuracy
measure (2), employing the soft reference labels Pt,i. For better
comparison, we also investigate the hard accuracy measure (1).

5.1. Experimental Setup

For the experiments we used the Berlin Database of Emotional
Speech [20] with speech recordings at 16 kHz sampling rate. It
was recorded by ten actors (5 female and 5 male) expressing ten
German utterances in seven different emotional states (fear, disgust,
happiness, boredom, neutral, sadness and anger). With the aid of
a perception test, the creators assessed the correctness of the acted
emotions by the actors and labeled the formerly accepted 535 speech
files. Since the Berlin Database does not include the detailed votes
of the perception test, we repeated labeling with six subjects to
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Fig. 1. Recognition results in terms of the state-of-the-art accu-
racy (% ACCHD) vs. SNR (dB). Asterisk markers represent the new
SLDA with SD training, while plus and circle markers denote the
classical LDA with SD and HD training, respectively.

obtain a distribution over all emotions for each speech file, which is
the soft ground truth. An overview of the overall result of our per-
ception test is illustrated in percent as a confusion matrix in Table 1,
whereby the x-axis represents the votes of the human raters and the
y-axis depicts the intended emotion. It is evident that the perception
test results in a distribution of the human votes over the predefined
classes. For further investigations we have left out 13 speech files, in
which the emotion class of the majority vote of the human raters did
not agree with the intended emotion of the Berlin database. Hence,
we took the remaining T = 522 speech files.

For a more realistic application case, the speech files were sub-
ject to additive car noise from the NTT Ambient Noise Database [23]
at fixed SNR conditions (0 dB up to 20 dB active speech level in 5
dB steps) according to ITU-T Recommendation P.56 [24]. The con-
sidered SNR conditions are complemented with a clean speech con-
dition denoted by an SNR of∞ dB. Both emotional speech files and
noise files were downsampled to 8 kHz sampling rate. The audio
material was randomly split up into a training and a test set (70% /
30%) with disjoint speakers and then randomly assigned to the noise
files. This process was repeated 40 times and the recognition results
were averaged afterwards to obtain a reliable result. Furthermore,
the NN was trained in multi-condition style on noisy data at an SNR
of -5 dB and 10 dB as well as on clean data.

We analyzed three different cases, which were all evaluated with
both the ACCHD (1) and the ACCSD (2) accuracy measures. For
the first we used the classical LDA and trained our NN with the
ground truth obtained from the majority votes of our perception test
(”HD training”). Accordingly, only one output node of the NN was
predefined as correct for each file in the training step. For the second
and the third approach all output nodes of the NN were given our
soft ground truth Pt,i with i ∈ {1, . . . , N} as target signal (”SD
training”). The difference consists in using either the classical LDA
or the new SLDA.

5.2. Results and Discussion

Based on the two accuracy measures ACCHD and ACCSD, Fig. 1 and
Fig. 2 illustrate the recognition results of the three depicted cases. In
both the circle markers represent the LDA with HD training result,

-5 0 5 10 15 20 ∞38

40

42

44

46

48

50

52

SNR (dB)

A
C

C
SD

[%
]

SLDA with SD training
LDA with SD training
LDA with HD training

Fig. 2. Recognition results in terms of the (new) soft accuracy mea-
sure (% ACCSD) vs. SNR (dB). Asterisk markers represent the new
SLDA with SD training, while plus and circle markers denote the
classical LDA with SD and HD training, respectively.

whereas the plus and the asterisk markers characterize SD training
with LDA and SLDA, respectively. Please note that a comparison
of the respective accuracies in Fig. 1 and Fig. 2 is not meaningful,
since their definition essentially differs.

With regard to the ACCHD the HD training approach with the
classical LDA surpassed the two SD training approaches in Fig. 1,
as expected, distinctly by up to 15% absolute. It is notable, that the
SLDA approach achieved some better result than the classical LDA
with SD training of around 1% absolute. In contrast, by applying
the soft accuracy measure ACCSD it is clearly evident in Fig. 2 that
the SD training approaches lead to a much better result than the HD
training. Moreover, the SLDA method surpassed the classical LDA
procedure by up to 1.8% absolute. It has to be borne in mind that
the improvement of the SLDA is based on a posterior distribution
with a very small variance since on average only 9.3% of all human
votes differ from the desired emotion of the actors (Table 1). It can
be expected that the improvement of the SLDA vs. the LDA rises
even more in the case of a more uniform distribution. Employing
SD training and the SLDA outperforms the conventional HD training
approach by 22% relative in ACCSD.

6. CONCLUSIONS

In this work, we proposed a two-step approach to classification tasks
in social signal processing, consisting of a soft retraining of the
classifier and a soft modification of the linear discriminant analysis
(SLDA) in order to enable the possibility to exploit ambiguous class
reference labels. We investigated the performance of the proposed
SLDA method exemplarily for speech emotion recognition and used
a soft accuracy measure for the evaluation being applied to the rec-
ognizer’s confidence output. Using a soft ground truth (i.e., ambigu-
ous reference class labels) the results show that both retraining and
SLDA compared to the conventional training and LDA improves the
performance by around 22% relative. In this paper we focused on
the mathematics of the new soft linear discriminant analysis.

In future work we will expand the evaluation by applying some
more sophisticated NNs (e.g., deep neural networks) and adding fur-
ther databases with ambiguous labels, especially with natural emo-
tions.
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