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ABSTRACT

Although great progress has been made in automatic speech recog-
nition (ASR), significant performance degradation still exists in dis-
tant talking scenarios due to significantly lower signal power. In
this paper, a novel adaptation framework, named integrated adap-
tation with multi-factor joint-learning, is proposed to improve the
recognition accuracy for distant speech recognition. We explore and
extract speaker, phone and environment factor representations using
deep neural networks (DNNs), which are integrated into the main
ASR DNN to improve classification accuracy. In addition, the hid-
den activations in the main ASR DNN are used to improve the factor
extraction, which in turn helps the ASR DNN. All the model param-
eters, including those in the ASR DNN and factor extractor DNNs,
are jointly optimized under the multi-task learning framework. Fur-
ther more, unlike prior techniques, our novel approach requires no
explicit separate stages for factor extraction and adaptation. Experi-
ments on the AMI single distant microphone (SDM) task show that
the proposed architecture can significantly reduce word error rate
(WER) and additional improvement can be achieved by combining
it with the i-vector adaptation. Our best configuration obtained more
than 15% and 10% relative reduction on WER over the baselines us-
ing the SDM and close-talk data generated alignments, respectively.

Index Terms— Far-field speech recognition, Deep neural net-
work, Factor representation, Multi-task learning, Integrated adapta-
tion

1. INTRODUCTION

We have witnessed significant progress made in automatic speech
recognition (ASR) in the last few years especially after the intro-
duction of the deep neural network (DNN) based acoustic models
[1, 2, 3]. These new advancements have reduced the word error
rate (WER) to a level that passed the threshold for adoption in many
close-talk scenarios (e.g., voice search on a smart phone). However,
these systems still perform poorly under the distant (far-field) talk-
ing condition [4], where the speech signals are captured by one or
more microphones located father away from the speaker. Low signal
strength is the main cause of the problem in this scenario since it
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leads to low signal to noise ratio (SNR) and makes the system sus-
ceptible to reverberation and additive noise in normal environment.

Many techniques [5, 6, 7] have been proposed to deal with the far
field speech recognition problem. Model adaptation [8], which au-
tomatically adjusts the model’s behavior based on the testing condi-
tion, is one of the most important methods proposed. Popular model
adaptation techniques include maximum likelihood linear regression
(MLLR) [9, 10] in the GMM-HMM systems, and linear transfor-
mation based techniques, such as linear input network (LIN), lin-
ear output network (LON) and linear hidden network (LHN), in the
DNN-HMM framework [11, 12].

More recently, factor-aware (e.g., noise-aware, speaker-aware)
adaptation received great attention for the DNN-HMM systems. In
this adaptation framework, a good factor representation, in addition
to the speech feature vector, is fed into DNNs as auxiliary infor-
mation. In most such systems, the auxiliary information is used to
provide factor-dependent bias to the DNN so that the DNN’s output
depends on the factor value.

I-vector, originally proposed for speaker recognition [13], can be
directly used as speaker and channel representation for factor-aware
DNN adaptation [14, 15]. In [16] a speaker code is used and jointly
optimized along with the DNN. In the noise-aware [17] and room-
aware training [6], the average noise vector and T60 value are used
as factor representations, respectively, to indicate the noise and room
conditions. Multiple factors are extracted with joint factor analysis
(JFA) [18] or vector Taylor’s sequence (VTS) expansion [19] and
used in [20].

In all the factor-aware methods, a factor representation, that is
constant with regard to the speaker or utterance, has to be explicitly
estimated before adaptation happens for both training and testing.
The factor extraction process can be completely independent of the
recognition task such as in [14, 15, 17], or highly coupled with the
recognition task as in [16]. In either way, it introduces significant
latency since the factor representation can only be reliably estimated
after observing enough speech frames, in most cases, the whole ut-
terance.

In this work, we develop a DNN based approach to extract mul-
tiple factor representations. The extracted factors are integrated into
and used to adapt the main DNN that conducts speech recognition.
At the same time, the hidden layers in the main DNN is fed into
and used to adapt the factor extractors. The model parameters in
all the factor extractors and the main DNN are jointly trained under
the multi-task learning framework. Unlike aforementioned works,
in our proposed adaptation framework factor representations are dy-
namically estimated after observing each speech frame in the same
pace speech recognition happens. There is no separate factor ex-
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traction process. This eliminates the high latency problem often ob-
served in other approaches. We evaluate our proposed approach on
the far-field speech recognition task.

The remainder of the paper is organized as follows. In Section 2
we introduce the novel integrated adaptation framework with multi-
factor joint-learning and describe factor extraction, factor integration
and joint training in detail. We report experimental results in Section
3 and conclude the paper in Section 4.

2. MULTI-FACTOR INTEGRATION AND
JOINT-TRAINING

2.1. Factor Extraction

Different from models in which the auxiliary information is coded
as a constant vector across the whole utterance or speaker session,
the factor representations are dynamically estimated using a DNN in
our proposed framework. Our work is inspired by the previous works
which used DNNs to extract speaker representation and achieved a
good performance on both speaker [21, 22] and speech recognition
[23, 24, 25]. Here, we extend this basic idea to extract not only
speaker representation but also phone and environment representa-
tions, which are believed to be helpful for acoustic modelling.

Fig. 1. The structure of the factor extractors, each of which is a
four-layer DNN with a bottleneck layer in the middle. The speaker
and phone extractors are trained using the cross-entropy criterion
and the environment-factor remover is trained using the mean square
error (MSE) criterion to construct close-talk features from the far-
field features.

The structures of the factor extractors are illustrated in Figure 1.
Each factor extractor is a four-layer DNN with a bottleneck layer in
the middle. The output of the bottleneck layer is used as the rep-
resentation of the specific factor the DNN is trained for. For dif-
ferent factors different targets and objective functions are used for
model optimization. More specifically, the speaker and phone labels
are used in speaker and phone factor extractors, respectively. These
two DNNs are trained to differentiate among speakers and phones
and are optimized using the cross-entropy criterion. The synchro-
nized parallel far-field and close-talk data are utilized to learn an
environment-remover representation. This DNN takes the far-field
feature as the input and the close-talk feature as the reference target.
In other words it is trained to learn the transformation from the far-
field feature to the close-talk feature. We believe that this learned

transformation encodes knowledge to remove room-dependent in-
formation related to reverberation and device from the input signal.

2.2. Factor Integration

The extracted factor representations can be fed into the input layer
(similar to the way the augmented features are used in [6, 14, 17]),
the hidden layer, or the output layer to aid the main ASR DNN to
conduct speech recognition. In addition, information from the main
ASR DNN can help extracting better factor representations. Figure
2 shows the architecture in which all the factors are fed into the out-
put layer of the main ASR DNN while the hidden layer output of
the main ASR DNN is fed as auxiliary information into the factor
extractors. This later information flow, named cross-connections in
this paper, is shown as the red line in Figure 2 and it is novel. With
this design of factor integration and cross-connection, the main ASR
DNN and factor extractors can benefit from each other and improve
the performance.

Note that, our architecture does not rule out integration of factors
extracted using existing techniques. For example, auxiliary features
such as i-vector, T60 and speaking-rate can all be concatenated with
the raw acoustic feature to form the model inputs.

Fig. 2. The multi-factor integration and joint-learning architecture in
which the factor representations are fed into the main ASR DNN’s
output layer while the hidden layer of the main ASR DNN is fed into
the factor extractors.

2.3. Multi-task Learning

The model parameters in both factor extractors and the main ASR
DNN are jointly learned under the multi-task learning framework
[26, 27] from the randomly initialized model. More specifically, the
objective function

E(θ) = Easr(θ) + λ1Ephn(θ) + λ2Espk(θ) + λ3Eenv(θ) (1)

for the proposed model is a weighted sum of four criteria: the cross-
entropy (CE) criterion Easr(θ) used for the senone classification in
the main ASR DNN, the CE criterion Ephn(θ) for the phone factor
extraction, the CE criterion Espk(θ) for the speaker factor extrac-
tion, and the MSE criterion Eenv(θ) for the environment-factor re-
mover. θ represents all the DNN parameters. λ1, λ2, and λ3, which
are set to 0.1, 0.1, and 0.01 in our study, are the mixing weights for
the three factor extractors.
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The multi-task joint learning proposed here is another key dif-
ference between our approach and prior arts that use DNNs to ex-
tract information representation. For example, in [23, 24] the au-
thors firstly trained a DNN to extract a speaker code and then opti-
mized the main ASR DNN with the speaker representation extractor
fixed. In contrast, in our approach the factor extractors and the main
ASR DNN are tightly coupled into one integrated framework and
jointly optimized. There is no explicitly separated factor extraction
and adaptation stage in both training and decoding. During decod-
ing, only the senone softmax layer is needed which can be easily
computed using the conventional feed-forward algorithm.

3. EXPERIMENTS AND RESULTS

3.1. Experimental setup and baseline systems

To evaluate the proposed approaches, a series of experiments were
performed on the AMI single distant microphone (SDM) task. There
are about 80 hours and 8 hours in training and evaluation sets respec-
tively [5].

In this work, we exploited Kaldi [28] for building speech recog-
nition systems and CNTK [29] for training our novel DNN archi-
tectures. We first followed the officially released kaldi recipe to
build an LDA-MLLT-SAT GMM-HMM model. This model uses
39-dim MFCC feature and has roughly 4K tied-states and 80K Gaus-
sians. We then use this acoustic model to generate the senone align-
ment for neural network training. In the DNN-HMM systems, 40-
dimensional log mel-filter bank features with delta and delta-delta
are used. The DNN input layer is formed from a contextual window
of 11 frames or 1320 units. The DNN baseline has 6 hidden layers
with 2048 Sigmoidal units in each layer. The networks are trained
using the stochastic gradient descent (SGD) based backpropagation
(BP) algorithm, with minibatch size of 256.

For decoding, we used the 50K-word AMI dictionary and a tri-
gram language model interpolated from the one created using the
AMI training transcripts and that using the Fisher English corpus.
During the decoding we followed the standard AMI recipe and did
not rule out overlapping segments. About 10% absolute WER re-
duction can be achieved if we don’t consider these segments.

Besides the standard full training set, a randomly selected 10K-
utterance subset (about 10 hours) is used for fast model training and
evaluation. The training procedures and test sets are identical in the
sub- and full-set experiments. Since the IHM and SDM data are
synchronized and the quality of the IHM data is much higher than
that of the SDM data, we trained another SDM baseline using the
IHM model generated senone alignment. The performance of these
two baselines, which are comparable with other works [5, 30], are
presented in Table 1.

Table 1. WER (%) of the Baseline Systems on the SDM Data
System Alignment Sub Set Full Set

DNN-HMM SDM 68.3 58.8
DNN-HMM IHM 65.2 55.9

3.2. Evaluation of the proposed strategies

The proposed integrated adaptation architecture with multi-factor
joint-learning is evaluated in this subsection. In all the experiments
reported below we used the IHM alignment since it is better than

the SDM alignment as shown in Table 1 and since the IHM data are
also used to train the environment-factor remover. The same 1320-
dim contextually expanded FBANK features are used as the inputs
for both the main ASR DNN and factor extractor DNNs. The main
ASR DNN is configured to have 6 hidden layers with 2048 units per
layer. All the factor extractors have 4 hidden layers with the 100 di-
mension bottleneck in the third layer. The output dimensions of all
the modules are shown below:

• Main ASR DNN: with 4K units, which is the number of
senones in the HMM model.

• Speaker factor: with 547 units, which corresponds to the
number of speakers in the AMI training set.

• Phone factor: with 176 units, which is the number of
position-dependent phones in AMI dictionary.

• Environment-factor remover: with 1320 units, the same
size as the input feature since it tries to estimate the close-
talk context-expansion FBANK features.

With this model size configuration, the entire architecture is
trained following the multi-task learning procedure described in
Section 2.

We first compared the performance of systems in which only
one factor is used and the factor representation is integrated at in-
put, hidden, and output layers of the main ASR DNN. The results
achieved using the 10k-utterance SDM subset are illustrated in Ta-
ble 2. From the table we can observe that all factors are helpful
when they are used alone no matter which layer they are integrated
to. This demonstrates that the neural network based factor extraction
is effective for the far-field speech recognition task we evaluated. On
the other hand, at which layer the integration happens does matter. In
fact, integrating the factors at the output layer consistently and sig-
nificantly outperforms the system where the integration happens at
the input and hidden layers. This is likely because at the output layer
the factors can have more direct effect to the estimated posteriors.
Among the three factors, the environment-remover representation,
which is believed to be especially important for the far-field scenar-
ios, seems to perform best although the difference is not significant
when integrated at the output layer.

Table 2. WER (%) comparisons of the proposed multi-factor joint-
learning DNN (denoted as MF-DNN) using different factors on the
SDM 10k-utterance subset. The IHM generated alignment is used in
all setups. Different factor-integration layers are investigated.

System Factor Integration WER(%)
DNN — — 65.2

MF-DNN

Speaker
Input 63.8

Hidden 63.7
Output 61.6

Phone
Input 64.1

Hidden 63.7
Output 61.4

Env
Input 63.2

Hidden 62.0
Output 61.2

We then investigated the efficacy of adding the cross-connection
in the architecture. Since the best integration position is the output
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layer, we added the cross-connection only to that configuration. The
results on the 10k-utterance SDM subset are presented in Table 3.
These results clearly show that adding cross-connections can pro-
vide consistent improvements for every factor. This confirmed our
conjecture that with this cross-connection the main ASR DNN and
the factor DNNs can benefit from each other.

We further integrated the multiple factors into one framework to
build the final multi-factor joint-learning architecture. As shown in
the bottom rows of Table 3, significant improvement can be obtained
with multi-factor integration compared to the single-factor integra-
tion. Compared to the baseline trained using the IHM alignment, our
proposed multi-factor assisted joint-learning method gets 8% rela-
tive reduction on WER.

Table 3. WER (%) comparisons of the proposed multi-factor joint-
learning DNN with and without the cross-connection (denoted as X-
connection) on the 10k-utterance SDM subset. The IHM alignment
is used in all setups.

System Factor Integration WER(%)
DNN — — 65.2

MF-DNN

Speaker Output 61.6
+X-connection 61.0

Phone Output 61.4
+X-connection 60.8

Env Output 61.2
+X-connection 60.7

Spk+Phn+Env Output 60.4
+X-connection 60.1

As we mentioned in Section 2, our proposed approach demands
no separate factor estimation stage. It is interesting to see whether
the proposed approach can be combined with other adaptation tech-
nologies. In this work, we extract a 128 dimensional i-vector for
each speaker using a 2048-component GMM and concatenate the i-
vector with the raw acoustic feature as the inputs to both the ASR
DNN and the factor extractor DNNs (shown in Figure 2). The re-
sults using the combined feature is summarized in Table 4. These
results show that both the proposed approach and the i-vector based
approach can achieve substantial gains. These two approaches are
also complementary as additional improvement can be obtained by
combining two. The best result is achieved when the environment-
remover and phone factor are combined with i-vector. No further
gain is observed when DNN based speaker factor is also used. This
is because the speaker information has been well represented in i-
vector.

Table 4. WER (%) of different combinations of the proposed multi-
factor joint-learning DNN with the i-vector based adaptation on the
SDM 10k-utterance subset. The IHM alignment is used in all setups.

System Factor WER(%)

DNN — 65.2
i-vector 62.5

MF-DNN
i-vector+Env 57.9

i-vector+Env+Phn 57.1
i-vector+Env+Phn+Spk 57.9

Finally, the proposed multi-factor joint-learning using the best
structure and configuration is evaluated on the full AMI SDM cor-
pus, and the results are listed in Table 5. The conclusion on the full
corpus is consistent with that on the subset: significant gain can be
observed when using multi-factor joint-learning and additional im-
provement can be obtained when further combining i-vector. Over-
all, on the SDM full set we reduced the WER from 58.8% to 55.9%
by using the IHM generated alignment, and further reduced it to
50.0% with the proposed approach. This translates to 15% and 10%
relative error reduction over the baselines using the SDM and IHM
alignments, respectively. In addition, even larger improvement is ob-
served on the subset, which demonstrates that the proposed approach
can be especially useful when only small training set is available,
e.g., when building a new system for a new language or a new task.

Table 5. WER (%) comparisons of the proposed architecture on the
full set, all with IHM alignment

System Sub Set Full Set
DNN 65.2 55.9

DNN+i-vector 62.5 52.0
MF-DNN 60.1 53.5

MF-DNN+i-vector 57.1 50.0

4. CONCLUSION

In this paper we proposed a novel integrated adaptation framework
with multi-factor joint-learning for the far-field speech recognition.
Several useful factors, including speaker, phone and environment,
are explored for the distant scenarios. DNNs are used to extract
factor representations, which can be integrated with the ASR DNN.
In this unified framework, the factors are fed into the main ASR
DNN and the hidden layer of the main ASR DNN is fed into the
factor extractors so that they benefit from each other. Different from
previous works in which all the modules are trained separately, in
our proposed approach all the DNN parameters are jointly optimized
under the multi-task learning framework. In addition, our approach
requires no separation of the factor estimation and adaptation stages
in both training and decoding. Both factor estimation and adaptation
are embedded inside the framework. We observe that the best result
is achieved when the factors are integrated to the main ASR DNN
at the output layer, and adding the cross-connection from the main
ASR DNN to the factor extractors helps.

This novel integrated adaptation architecture can also be easily
combined with other factor-based adaptation techniques. The final
best multi-factor joint-learning architecture combined with i-vector
adaptation obtains more than 15% and 10% relative reduction on
WER for the AMI SDM task over the baselines using the SDM and
IHM alignments, respectively.
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