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ABSTRACT

Ever since the deep neural network (DNN)-based acoustic
model appeared, the recognition performance of automatic
speech recognition has been greatly improved. Due to this
achievement, various researches on DNN-based technique
for noise robustness are also in progress. Among these ap-
proaches, the noise-aware training (NAT) technique which
aims to improve the inherent robustness of DNN using noise
estimates has shown remarkable performance. However, de-
spite the great performance, we cannot be certain whether
NAT is an optimal method for sufficiently utilizing the in-
herent robustness of DNN. In this paper, we propose a novel
technique which helps the DNN to address the complex
connection between the input and target vectors of NAT
smoothly. The proposed method outperformed the conven-
tional NAT in Aurora-5 task.

Index Terms— Deep neural networks (DNNSs), robust
speech recognition, noise aware training (NAT), denoising au-
toencoder.

1. INTRODUCTION

In recent years, deep learning has been prevalent in signal
processing and it has become an opportunity for automatic
speech recognition (ASR) to progress. Especially in acoustic
modeling, introduction of the deep neural network (DNN)-
hidden Markov model (HMM) system which represents the
relationship between the acoustic features and HMM states
using DNN instead of Gaussian mixture model (GMM) is
considered as a breakthrough. DNN-HMM system has out-
performed the conventional GMM-HMM system in a variety
of ASR tasks [1, 2, 3]. The remarkable performance of the
DNN-HMM system is attributed to its capability in automati-
cally learning complicated non-linear mapping from the input
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to the target vectors. If a sufficient amount of training data is
available, more complicated input-target relationship can be
easily learned by using wider and deeper neural network ar-
chitectures [4].

Interest in DNN’s efficient learning capability has also
been expanded to the robust speech recognition area. DNN-
based approaches to noise robustness can generally be di-
vided into two categories: feature-based and model-based
techniques. The feature-based techniques [5, 6] directly
train an arbitrary unknown mapping from the noisy to the
clean speech features unlike the conventional techniques
[7, 8, 9, 10] which usually require some specific models or
formulations to account for the relationship. Among these
techniques, feature enhancement algorithms based on deep
denoising autoencoder (DDAE) has demonstrated its superi-
ority in reconstructing the clean features from noisy features
[11, 12]. The model-based techniques leave the observations
unaltered and instead let the DNN parameters automatically
find out the relationship between the observed speech and
the phonetic targets. This approach is referred to the multi-
condition training which has been widely used in robust ASR.

Furthermore, some other techniques augment additional
information such as the background noise estimate or speaker
information to the input vector in order to improve the mod-
eling power of the DNN [13, 14]. Particularly a technique
referred to noise-aware training (NAT) attained the state-of-
the-art results on Aurora-4 task [13]. An interesting property
of NAT is that it follows the general procedure of the multi-
condition DNN-based acoustic model training, except for the
fact that it adds an input vector relevant to the environmen-
tal condition. NAT enables the DNN to learn the relationship
among noisy input, noise features and target vectors corre-
sponding to the phonetic identity by augmenting an estimate
of the noise present in the input signal. Due to its easy im-
plementation and good performance, NAT has already been
applied actively in speech enhancement and robust ASR [15].

Despite its success in robust ASR, yet we cannot be cer-
tain whether NAT is an optimal method in taking advantage
of the inherent robustness of the DNN framework. Although
NAT somewhat contributes to the noise robustness of DNN,
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its performance in adverse environment is still far from that
shown in clean condition. One of the fundamental reasons for
this phenomenon is that the current NAT framework is con-
sidered insufficient to make the DNN implement the mapping
from noisy speech and noise estimates to phonetic targets as
clearly as it addresses the relationship between clean speech
and the corresponding phonetic targets. A promising way to
improve the NAT is to extract some representation relevant
to clean speech features and then to implement the mapping
from this representation to the phonetic targets.

In this paper, we propose a novel approach to DNN train-
ing which can be a solution to the aforementioned issue of
NAT. The main idea of the proposed approach is to let the
DNN clarify the relationship among noisy features, noise
estimates and phonetic targets only after reconstructing the
clean features. In order to accomplish this, the proposed
technique cascades two individually fine-tuned DNNs into a
single DNN. The first DNN performs reconstruction of the
clean features from noisy features when noise estimates are
augmented. In order to reflect information of the noise esti-
mates in the reconstruction process effectively, we apply the
DDAE with a little modification to its output structure. Then
the next DNN attempts to learn the mapping between the
reconstructed features and the phonetic targets. The perfor-
mance of the proposed approach is evaluated on the Aurora-5
task and better performance is observed compared to the
conventional NAT.

2. A BRIEF REVIEW ON NOISE AWARE TRAINING

In this work, for a simple problem formulation, we will only
consider acoustic environments where the background noises
are dominant factors of speech degradation. Let us denote
an observed noisy feature, the corresponding unknown clean
feature, the corrupting noise and a HMM state identity being
extracted at the ¢-th frame as y,, x¢, n; and s;, respec-
tively. Additionally, we denote a subsequence of vectors
Xy Xmy+1°° " Xm, from frame index my to myp as x72. Un-
der the general framework of HMM-based recognition, we
assume that there exists an unknown underlying function that
approximates the posterior probabilities of the HMM states
given as follows:

p(selyl) = flyif7,ni%7) )

where f(-) represents the function that maps the noisy and
noise features to the corresponding HMM state identity which
contains phonetic information, 7' denotes the length of the in-
put feature, and the subscript 7 represents the temporal cov-
erage which is required for figuring out the contextual infor-
mation of the speech signal.

Since the true noise features nifi in (1) are unknown,
NAT replaces them with a single noise estimate. The input
vector of NAT is formed by augmenting the noise estimate
with a window of consecutive frames of noisy feature, i.e.,

vy =[yiil,n] 2)
t+71

where y, " represents a window of 27 + 1 frames of noisy
speech features and n; represents a noise estimate. The target
vector of the NAT network is given as the one-hot encoding
label concerned with the tied HMM states (senone) as in com-
mon DNN-based acoustic models. By applying this simple
process to both training and decoding, the DNN can automat-
ically learn the complex mapping from the noisy speech and
noise estimate to the HMM state labels.

However, even though this approach guarantees a certain
level of improvement in noise robustness, we need to check
whether the non-linear mapping obtained from NAT can be
generalized well. Although NAT aims to generate internal
representations that are robust to noise, when comparing its
recognition performance in noisy environment with that in
clean environment, we can easily discover that there still ex-
ists a large performance gap. For this reason, we need a more
sophisticated technique to improve the modeling power of the
NAT.

3. TWO-STAGE NAT

In this section, we propose a novel approach to improve NAT.
The basic idea of the proposed approach starts from the as-
sumption that the underlying function f(-) in (1) can be ex-
presses as a composition of two separate functions as follows:

p(selyl) = fyifTnfT) = hog(y*7,ni*])  (3)

where the output of ¢(-) is a clean feature vector stream,

xiTT > g(yiT nlfT), 4)
and
p(selyl) = h(x[*]). (5)

In (3)-(5), g(-) represents a function which deals with the
mapping from the noisy and noise features to the clean speech
features and h(-) is a function predicting the phonetic target
based on the clean speech feature stream. To mimic this func-
tion structure, we propose a DNN as shown in Fig. 1. The
whole DNN is constructed by concatenating two individually
fine-tuned DNNs and each separate DNN approximates the
function g(-) and h(-) in (3). The first DNN which is based on
DDAE is applied to separate the clean speech features from
the corruption noises. We call this DNN the lower DNN since
it is placed in the lower part of the DNN in Fig. 1. The second
DNN which is called the upper DNN, deals with modeling the
relationship between the output vector generated by the lower
DNN and the phonetic target.

3.1. Lower DNN

For training the lower DNN, we apply the DDAE which has
proven its capability of reducing the distortion in the origi-
nal noisy feature [11]. Although it is a common method that
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Fig. 1. DNN structure of proposed technique.

DDAE is used to reconstruct clean features from only noisy
speech features [16], the DDAE in this technique is designed
somewhat differently. The output layer of the DDAE corre-
sponds to the clean speech features and the noise features and
the input layer is given by (2). From this structure we can see
that the DDAE extracts not only the clean speech and noise
features from the noisy input features augmented with noise
estimate.

Since the purpose of the lower DNN is to extract only
the clean features, we exclude the noise-related nodes in the
output layer after training as depicted in Fig. 1. Therefore,
the DDAE is designed to have an asymmetric structure where
the dimensions of the input and output vector are different
and the output vector of the lower DNN can be represented as
follows:

Ve = [%77] (6)

i.e, a window of 27 + 1 frames of clean speech feature esti-
mates. To obtain the noise estimate n; in (2), a time-varying
environmental estimation approach based on the interacting
multiple model (IMM) algorithm is utilized [17]. By reflect-
ing the dynamic environmental estimate through the IMM
technique to the input of the network at each frame, we can
expect the lower DNN to reconstruct the clean features con-
sidering the real-time noise at each frame.

3.2. Upper DNN

In the training stage of the upper DNN training, the network
learns the mapping between the output vector of the lower
DNN Vv, in (6) and the corresponding one-hot encoding la-
bel which contains information of the HMM states. Through
the mapping, prediction of the posterior probabilities of the

Table 1. WERSs (%) of Baseline, NAT and TS-NAT for non-
filtered and g. 712 filtered test data sets averaged over noise
types on Aurora-5 task without drop training.

SNR (dB) Non-filtered G.712 filtered
Method Baseline | NAT | TS-NAT || Baseline | NAT | TS-NAT
Clean 1.32 1.25 0.89 0.90 0.87 0.71
15 1.88 1.95 1.51 1.28 1.21 0.94
10 3.33 3.42 2.88 2.09 1.94 1.60
5 7.83 8.09 7.14 4.71 4.36 4.06
0 20.85 20.67 19.64 13.13 11.94 | 11.92
Avg. 7.04 7.08 6.41 4.42 4.06 3.85

Table 2. WERs (%) of Baseline, NAT and TS-NAT for non-
filtered and g. 712 filtered test data sets averaged over noise
types on Aurora-5 task with dropout training.

SNR (dB) Non-filtered G.712 filtered
Method Baseline | NAT | TS-NAT || Baseline | NAT | TS-NAT
Dropout 20% 20% 20% 20% 20% 20%

Clean 1.32 1.05 0.91 0.84 0.78 0.85
15 1.87 1.78 1.52 0.90 1.15 0.92
10 3.29 3.18 2.59 1.89 1.88 1.31
5 7.77 7.62 6.63 4.33 397 3.68
0 20.60 19.92 | 19.30 11.92 11.57 | 11.36

Avg. 6.97 6.71 6.19 3.98 3.87 3.62

HMM states from the reconstructed features is performed.
This training method can be seen as feature-space noise adap-
tive training which is demonstrated to show worse perfor-
mance than multi-condition DNN-HMM [13]. However, V,
here has different characteristic with the feature vector ob-
tained from the conventional feature enhancement techniques.
Since v, is acquired by the lower DNN, the reconstructed vec-
tor is free from information loss caused by using linear ap-
proximations which are used in the conventional techniques
[7, 8,9, 10]. Especially, since the initial values of the lower
DNN including its output layer parameters are set elaborately
through the asymmetric DDAE utilizing environmental esti-
mates, it is possible to generate a feature vector with phonetic
discriminative information.

4. EXPERIMENTS

The performance of the proposed method was evaluated on
Aurora-5 task [18]. In order to compare the performance
of the proposed technique (7S-NAT), two different versions
of DNN-HMM were trained. The first one was the basic
multi-condition DNN-HMM (Baseline) and the second one
was the DNN-HMM based on NAT (NAT). Also, the per-
formance evaluation with dropout technique [19] which is
widely used in the DNN training was also investigated.

4.1. Aurora-5 task and GMM-HMM system

The Aurora-5 task was developed to investigate the perfor-
mance of speech recognition for speech recorded with hands-
free device in noisy room environments. The test data con-
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sisted of two sets: G. 712 filtered and non-filtered sets. The G.
712 filtered set comprised clean speech utterances where ran-
domly selected car or public space noise samples were added
at signal-to-noise ratio (SNR) levels O to 15 dB. The non-
filtered set consisted of clean speech utterances where ran-
domly selected interior noises were augmented at the same
SNR range above.

In these experiments, we used multi-condition training
data for training all the DNN-based techniques and the GMM-
HMM systems were built based on the clean speech data pro-
vided by the G. 712 filtered and non-filtered data sets. The
number of utterances used for HMM training was 8,623 for
each data set. The input features were 39-dimensional MFCC
features (static plus first and second order delta features) and
cepstral mean normalization was performed. Each word in
the vocabulary, which was designed based on TI-Digits DB,
was modeled by a left-to-right structured HMM consisting
of 16 states and 4 Gaussian mixture components per state.
The training of the HMM parameters and Viterbi decoding
for speech recognition was carried out using HTK software
[20]. Also, the state labels for the frames were obtained from
the forced alignment of clean speech data with HVite com-
mand of HTK 3.4.1 using the GMM-HMM acoustic models.

4.2. Structure and training of DNNs

For training all the DNN-based acoustic models, log mel fil-
terbank (FBANK) feature of 23-dimension was used as an in-
put. As in the case of MFCC feature above, both the first and
second-order derivative of FBANK features were used. The
input layer for Baseline was formed from a context window of
11 frames having 759 visible units for the network and that of
NAT had total 828 visible units by augmenting the input vec-
tor of NAT with the IMM-based noise estimate. Both DNNs
had 11 hidden layers with 2,048 hidden units in each layer
and the final soft-max output layer had 179 units, each corre-
sponding to the states of the HMM systems. Both networks
were initialized using stack of RBMs and each RBM was
trained using contrastive divergence [21]. The fine-tuning of
the two networks were performed using cross entropy as the
loss function by error back propagation supervised by state
IDs for frames. The mini-batch size for the stochastic gra-
dient descent algorithm was set to be 256. The learning rate
was initially set to be 0.01 and exponentially decayed over
each epoch with decaying factor 0.95. The momentum was
set to be 0.9. The training was stopped after 50 epochs.

The DDAE for training the lower DNN had six layers in
total consisting of three encoding layers and three decoding
layers. The number of nodes in each layer was set to be 2,048
except for the input and output layers. The input layer of the
DDAE was equal to that of NAT. Each layer of encoding lay-
ers was initialized using the weights and hidden unit biases
of RBM. Then the decoding layers were initialized using the
transpose of the weights and the visible unit biases of encod-
ing layers. After the initialization, 759 nodes related with

clean features were chosen from total 828 output nodes. The
fine-tuning of the asymmetric DDAE was performed by error
back propagation with squared error between output vector
and clean feature as the loss function. The learning rate was
initially set to be 0.005 and exponentially decayed over each
epoch with decaying factor 0.9 until the training was stopped
after 30 epochs.

The upper DNN had 5 hidden layers with 2048 hidden
units. And the final soft-max output layer had 179 units in
common with the other DNN-HMMs above. The rest of the
training configurations were the same with those of the other
DNN-HMMs. All the techniques attempted in this experi-
ments were based on wide and very deep DNN structures.
In training and optimizing these heavy networks, overfitting
can be a serious problem. Considering this issue, we used the
dropout technique which has already proved its regularization
capability [19]. The dropout percentage of 20% were applied
to the three different techniques with the other settings for
DNN training unchanged.

4.3. Performance evaluations on Aurora-5 task

We compared performance of 7S-NAT with those of Baseline
and NAT on Aurora-5 task. The word error rates (WERS) of
the three approaches are shown in Table I. We can see that
both NAT and TS-NAT outperformed Baseline in almost every
condition. It demonstrates that the dynamic noise estimate
obtained from IMM technique obviously helps the DNN-
based acoustic models to reflect environmental factors. Also,
comparing TS-NAT with NAT, the performance of TS-NAT
is superior to that of NAT irrespective of SNRs. When the
dropout training is applied, the degree of improvement of the
proposed technique is enlarged. With dropout training per-
formed, the average relative error rate reductions (RERRs)
of TS-NAT over NAT at SNRs were 7.75% and 6.36% in
non-filtered and G.712 filtered set. This confirms that our
proposed approach which intervenes NAT through informa-
tion of reconstructed clean speech can be effective in making
the DNN learn the complex relationship among noise, noisy
and phonetic information.

5. CONCLUSION

In this paper, we have proposed a novel technique of DNN-
based acoustic model designed for effective usage of multi-
condition data and its noise estimate. The proposed technique
addresses the mapping from noisy speech and noise estimates
to phonetic targets effectively by concatenating two DNNs
which take role of clean feature reconstruction and predic-
tion of posterior probability over HMM states respectively.
Through a series of experiments on Aurora-5 task, we have
found that the proposed technique outperforms NAT in word
accuracy. Future study will deal with techniques considering
other environmental factors such as reverberation.
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