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ABSTRACT

Uncertainty decoding combines a probabilistic feature de-

scription with the acoustic model of a speech recognition

system. For DNN-HMM hybrid systems, this can be re-

alized by averaging the DNN outputs produced by a finite

set of feature samples (drawn from an estimated probabil-

ity distribution). In this article, we employ this sampling

approach in combination with a multi-microphone speech

enhancement system. We propose a new strategy for gen-

erating feature samples from multichannel signals, based on

modeling the spatial coherence estimates between different

microphone pairs as realizations of a latent random variable.

From each coherence estimate, a spectral enhancement gain

is computed and an enhanced feature vector is obtained, thus

producing a finite set of feature samples, of which we average

the respective DNN outputs. In the experimental part, this

new uncertainty decoding strategy is shown to consistently

improve the recognition accuracy of a DNN-HMM hybrid

system for the 8-channel REVERB Challenge task.

Index Terms— uncertainty decoding, multichannel speech

enhancement, DNN-based acoustic model

1. INTRODUCTION

In recent years, deep neural networks (DNNs) have emerged

as an effective method for discriminating between context-

dependent phonetic units in acoustic models of state-of-

the-art automatic speech recognition (ASR) systems. For

instance, DNN-HMM hybrid systems include one DNN

to directly map an observed feature vector to the poste-

rior likelihoods of the context-dependent Hidden Markov

Model (HMM) states [1]. Although DNN-based acoustic
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modeling has been shown to achieve remarkable results for

different recognition tasks [2, 3], the ASR performance is

still degraded by environmental distortions in adverse acous-

tic environments [4, 5]. This is why a variety of different

adaptation schemes for environmental robustness have been

proposed which either adapt the feature vectors (e.g., speech

enhancement [6, 7, 8]) or the back-end parameters (e.g., DNN

adaptation [9, 10, 11]).

Uncertainty decoding bridges front-end processing and back-

end adaptation by combining a probabilistic feature descrip-

tion with the acoustic model of an ASR system. For DNN-

based acoustic models, especially uncertainty decoding based

on numerical sampling has been shown to be promising using

the following strategy [12, 13]: The DNN outputs produced

by a finite set of feature samples (drawn from an estimated

probability distribution) are averaged to approximate the pos-

terior likelihoods of the context-dependent HMM states.

As the main contribution of this paper, we propose a new

strategy to generate feature samples by modeling estimated

parameters as realizations of a latent random variable. To

put this idea into practice, we consider a DNN-HMM hybrid

system with multichannel speech enhancement (beamformer

and postfilter) in the short-time Fourier transform (STFT)

domain. The coherence estimates at several microphone pairs

(used to calculate the postfilter gains) are modeled as real-

izations of the latent spatial coherence, so that we perform

separate coherence-based postfilters (one for each micro-

phone pair) and average the resulting DNN outputs. This new

uncertainty decoding scheme accounts for the variance of the

coherence estimation and is shown to consistently improve

the recognition accuracy of a DNN-HMM hybrid system for

the 8-channel REVERB Challenge task [14].

This article is structured as follows: First, the DNN-HMM

hybrid system is introduced in Section 2 as a baseline sys-

tem. After this, we propose the uncertainty decoding scheme

and its application to the DNN-HMM hybrid system in Sec-

tion 3. Finally, the experimental part (Section 4) is followed

by concluding remarks (Section 5).
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Fig. 1. DNN-HMM hybrid system with MVDR beamforming and coherence-based postfiltering in the STFT domain. The

length-257 output vector of the postfilter x̂n is transformed into the logmelspec domain (vector ẑn of length 24) and passed

through the nonlinear function fj(·) to estimate the posterior likelihood p(sj) of the j-th context-dependent HMM state sj .

2. DNN-HMM HYBRID SYSTEM WITHOUT

UNCERTAINTY DECODING

In this part, we briefly introduce the DNN-HMM hybrid sys-

tem which will be employed in Section 3 to integrate the pro-

posed uncertainty decoding scheme. As shown in Fig. 1, the

acoustic front-end is realized in the STFT domain by com-

bining an MVDR beamformer (spatial filtering stage) with

a coherence-based spectral enhancement method as postfil-

ter (for dereverberation and noise suppression).

MVDR beamformer: As first part of the acoustic front-

end, the STFT-domain microphone signals are processed by

an MVDR beamformer to reduce background noise and re-

verberation. The MVDR beamformer design is based on the

assumption of free-field sound-wave propagation and the con-

straint that a plane wave coming from the desired look di-

rection (here estimated using the SRP-PHAT pseudo spec-

trum [15]) can pass the system without distortions [16].

Postfilter: As second front-end component, we realize a

coherence-based postfilter with diagonal gain matrix (diag{·}
creates a diagonal matrix)

Ĝn = diag{(1− D̂1,n), ..., (1 − D̂257,n)} (1)

at time n producing the length-257 vector (DFT length 512)

x̂n = [x̂1,n, ...., x̂257,n]
T (2)

(with complex-valued coefficients x̂ν,n, where v = 1, ..., 257)

by a linear transformation of the input vector yn:

x̂n = Ĝnyn. (3)

The estimated diffuseness values 0 ≤ D̂ν,n ≤ 1 in (1) are

determined as described in [17]: For each microphone pair,

indexed by l = 1, ..., L, we estimate the time- and frequency-

dependent complex-valued coherence Γ
(l)
ν,n (using auto- and

cross-power spectra estimates, see (1) in [18]) and estimate

the respective coherent-to-diffuse power ratio (CDR) CDR
(l)
ν,n

by inserting the spatial coherence function of a diffuse (spher-

ically isotropic) sound field

Γ
(l)
diff,ν = sinc(2πfνd

(l)/c) (4)

into (5), where Re{·} is the real part, c is the speed of sound,

fν is the center frequency of the ν-th STFT band and d(l) is

the microphone distance at the l-th microphone pair. Note

that the index l has been omitted in (5) for notational con-

venience and that also other CDR estimates could be applied

(see overview in [19]). To account for the impact of the beam-

former on the diffuse noise component, we weight the CDR

CDR
(l)
ν,n with a correction factor Aν,n (see (3.28) in [20]) and

derive L microphone-pair specific diffuseness estimates

D(l)
ν,n = (1 +Aν,n CDR

(l)
ν,n)

−1. (6)

Finally, the averaged diffuseness values

D̂ν,n =
1

L

L
∑

l=1

D(l)
ν,n (7)

are then inserted into (1) to calculate the postfilter gain ma-

trix Ĝn.

Feature extraction: As shown in Fig 1, the output of the

Wiener filter is transformed into the lower-dimensional do-

main using the mel-filterbank matrix Wmel (of dimensions

24× 257) and the natural logarithm log(·):

ẑn = log
(

Wmel|x̂n|
2
)

. (8)

CDRν,n =
Γdiff,ν Re{Γν,n} − |Γdiff,ν |

2
−
√

Γ2
diff,ν Re{Γν,n}

2
− Γ2

diff,ν |Γν,n|
2
+ Γ2

diff,ν − 2 Γdiff,ν Re{Γν,n}+ |Γν,n|
2

|Γν,n|
2
− 1

(5)

5761



Acoustic back-end: In our implementation, the nonlinear

function fj(·) in Fig. 1 captures per-utterance mean and vari-

ance normalization, dynamic extension (delta and accelera-

tion coefficients), context extension (±5 frame splicing) as

well as the DNN (6 hidden layers with 2048 sigmoid acti-

vation functions, output layer with 3463 elements). Thus,

the posterior likelihood p(sj) of the j-th context-dependent

HMM state sj is given by the nonlinear transformation of ẑn:

p(sj |ẑn) = fj(ẑn). (9)

3. DNN-HMM HYBRID SYSTEM WITH

UNCERTAINTY DECODING

3.1. General idea of the uncertainty decoding scheme

Modeling acoustic features as random variables is a common

way to account for missing information (e.g., caused by envi-

ronmental distortions). Assuming the probability distribution

p(zn) of the feature vector zn and its mathematical relation

to the j-th DNN output fj(zn) to be known, uncertainty de-

coding combines the probabilistic feature description with a

DNN-based acoustic model by estimating the posterior proba-

bility of the context-dependent HMM state sj following [12]:

p(sj) = E{fj(zn)}. (10)

However, the nonlinear structure of fj(zn) (e.g., due to the

DNN activation functions) precludes an (exact) closed-form

solution of (10) and motivates two kinds of approximations:

First, assuming the DNN node activations to be statistically

independent an approximate solution can be found based on

a piecewise function. However, the assumption of indepen-

dence and the lack of a solution for the soft-max limits the

accuracy of the approximation [13, 21]. Second, the mathe-

matical expectation in (10) can be approximated using numer-

ical sampling techniques. This is computationally more ef-

ficient than linearizing fj(zn), because reasonable improve-

ments in the recognition accuracy can already be achieved for

a small number of samples [12, 13]. To give an example for

a numerical sampling strategy, consider the concept of ran-

dom sampling which can be summarized as follows [12]: We

draw a finite set of feature samples z
(l)
n (l = 1, ..., L) from the

probability distribution p(zn) and average the DNN outputs

fj(z
(l)
n ) to approximate p(sj):

p(sj) ≈
1

L

L
∑

l=1

fj(z
(l)
n ). (11)

This sampling scheme has been shown to improve the recog-

nition accuracy of DNN-HMM hybrid systems by using the

posterior distribution of a single-channel Wiener filter for es-

timating the PDF p(zn) [12].

In this article, we propose a new approach for applying the

approximation in (11) with the goal to capture parameter esti-

mation errors in DNN-HMM hybrid systems with multichan-

nel speech enhancement (beamformer and postfilter): The co-

herence estimates between different microphone pairs are in-

terpreted as realizations of the latent spatial coherence. Thus,

we implement one coherence-based postfilter for each micro-

phone pair to extract several feature vector realizations for ap-

plying the DNN-output averaging in (11). This new strategy

replaces the averaging of diffuseness estimates following (7)

by averaging the posterior likelihoods at the DNN output ac-

cording to (11). An overview of the difference between DNN-

HMM hybrid system with and without uncertainty decoding

is shown in Fig. 2. Note that this uncertainty decoding scheme

combines the variance of the parameter estimation with the

acoustic model of the DNN-HMM hybrid system.

3.2. Incorporation into the DNN-HMM hybrid system

In this section, we incorporate the proposed uncertainty de-

coding scheme into the DNN-HMM hybrid system of Sec-

tion 2. As fundamental idea, the microphone-pair specific

coherence estimates Γ
(l)
ν,n are modeled to be realizations of

the latent time- and frequency-dependent coherence. Instead

of averaging the diffuseness estimates obtained from the co-

herence estimates as in (7), we realize L separate coherence-

based postfilters:

x(l)
n = G(l)

n yn

G(l)
n = diag{(1−D

(l)
1,n), ..., (1−D

(l)
M,n)}.

(12)

The L obtained feature vectors

z(l)n = log
(

Wmel|x
(l)
n |2

)

, (13)

are then used for applying the DNN-output averaging in (11).

Fig. 2. Conceptional difference between the DNN-HMM hybrid system (a) without and (b) with uncertainty decoding.
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Table 1. WER scores for the REVERB challenge evaluation test set with DNN trained on clean data.

SimData RealData

T60 ≈ 0.25 s T60 ≈ 0.5 s T60 ≈ 0.75 s T60 ≈ 0.7 s

Near Far Near Far Near Far Avg. Near Far Avg.

No PF, no uncertainty decod. 6.2 7.4 7.4 10.6 8.1 12.5 8.7 27.1 28.4 27.8

With PF, no uncertainty decod. 6.1 7.2 7.4 10.4 8.0 12.0 8.5 27.0 28.2 27.6

With PF and uncertainty decod. 6.0 6.9 6.9 9.8 7.8 11.4 8.1 25.0 27.0 26.0

4. EXPERIMENTS

The experimental verification of the proposed uncertainty de-

coding scheme is based on the 8-channel REVERB challenge

task (circular microphone array with a diameter of 0.2 m) us-

ing the WSJ0 trigram 5k language model [14]. We employ the

Kaldi toolkit [22] as ASR back-end system and train a GMM-

HMM baseline system on the clean WSJCAM0 Cambridge

Read News REVERB corpus [23] (details on the feature

extraction in [12]) to determine the state-frame alignment

employed for DNN training: A generative pretraining using

the contrastive divergence algorithm (on restricted Boltzmann

machines) is followed by discriminative fine-tuning using the

mini-batch stochastic gradient descent approach (based on

the cross-entropy criterion) [1]. We consider DNN training

using the multi-condition training set (7861 utterances) pro-

vided by the REVERB challenge [14].

The evaluation test set consists of ∼ 5000 environmentally-

distorted utterances and is split into two categories: First, the

utterances of the clean WSJCAM0 Cambridge Read News

REVERB corpus are artificially corrupted (“SimData”) using

measured impulse responses (T60 ≈ 0.25 s, 0.5 s and 0.7 s),

recorded noise sequences (added to the microphones sig-

nals with 20 dB signal-to-noise ratio) and source-microphone

spacings of 0.5 m (“Near”) and 2 m (“Far”). Second, mul-

tichannel recordings (“RealData”) in a reverberant (T60 ≈
0.7 s) and noisy environment are considered with source-

microphone spacings of 1 m (“Near”) and 2.5 m (“Far”).

Table 1 shows the word error rate (WER) scores for the

evaluation test set, where training and decoding were per-

formed using the MVDR beamformer with (“With PF”) or

without (“No PF”) coherence-based postfiltering. We ob-

serve that the postfilter improves the recognition accuracy

of the DNN-HMM hybrid system and that incorporating the

uncertainty decoding scheme (without retraining the DNN)

leads to further reductions of the WER scores. Note that

this performance gain is achieved for artificially corrupted

evaluation data as well as for real recordings. Furthermore,

the recognition accuracy consistently increases especially in

scenarios with large speaker-microphone distances and for

real-world recordings.

With respect to the computational complexity, it should be

emphasized that the decoder remains unchanged besides the

transformation of multiple feature samples through the non-

linear function fj(·). In our implementation, the posterior

likelihoods at the DNN outputs are estimated in Matlab (us-

ing a GPU of type NVIDIA Tesla K20m). All remaining

decoding steps are performed with the Kaldi Toolkit (4 par-

allel jobs running locally on an AMD Phenom II 1090T

with 2.8 GHz). Based on this setup, the incorporation of the

proposed uncertainty decoding scheme into the DNN-HMM

hybrid system (with coherence-based postfilter) increases the

average decoding time by only 28 %.

5. CONCLUSIONS

We proposed a new uncertainty decoding scheme for DNN-

HMM hybrid systems with multichannel speech enhancement

(beamformer and postfilter). To capture front-end estimation

errors, the estimated spatial coherence values (used for cal-

culating the postfilter gains) are considered as samples drawn

from an unknown probability distribution. As a consequence,

we realize one coherence-based postfilter for each micro-

phone pair and thus produce a finite set of feature samples,

of which we average the respective DNN outputs to approxi-

mate the posterior likelihoods of the context-dependent HMM

states. This uncertainty decoding scheme is experimentally

verified using a DNN-HMM hybrid system with MVDR

beamforming and coherence-based postfiltering, where con-

sistent improvements in the recognition accuracy could be

achieved for the 8-channel REVERB Challenge task.

It should be emphasized that the proposed uncertainty decod-

ing scheme is also applicable to various DNN-based speech

recognition systems. On the one hand, other front-end param-

eters (e.g., the time-differences of arrival) can be modeled as

realizations of a latent random variable. On the other hand,

the transformation of the acoustic features to the posterior

likelihoods of the HMM states is not restricted to the non-

linear function considered in this article (e.g., one could also

employ a convolutional DNN).
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