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ABSTRACT

In this paper, we extend the deep long short-term memory (DL-
STM) recurrent neural networks by introducing gated direct con-
nections between memory cells in adjacent layers. These direct
links, called highway connections, enable unimpeded information
flow across different layers and thus alleviate the gradient vanish-
ing problem when building deeper LSTMs. We further introduce
the latency-controlled bidirectional LSTMs (BLSTMs) which can
exploit the whole history while keeping the latency under control.
Efficient algorithms are proposed to train these novel networks us-
ing both frame and sequence discriminative criteria. Experiments on
the AMI distant speech recognition (DSR) task indicate that we can
train deeper LSTMs and achieve better improvement from sequence
training with highway LSTMs (HLSTMs). Our novel model obtains
43.9/47.7% WER on AMI (SDM) dev and eval sets, outperforming
all previous works. It beats the strong DNN and DLSTM baselines
with 15.7% and 5.3% relative improvement respectively.

Index Terms— Highway LSTM, CNTK, LSTM, Sequence
Training

1. INTRODUCTION

Recently the deep neural network (DNN)-based acoustic models
(AMs) greatly improved automatic speech recognition (ASR) accu-
racy on many tasks [1, 2, 3, 4]. Further improvements were reported
by using more advanced models such as convolutional neural net-
works (CNNs) [5] and long short-term memory (LSTM) recurrent
neural networks (RNNs) [6, 7, 8].

Although these new techniques help to decrease the word error
rate (WER) on distant speech recognition (DSR) [9], DSR remains
a challenging task due to the reverberation and overlapping acoustic
signals, even with sophisticated front-end processing techniques [10,
11, 12] and multi-pass decoding schemes.

In this paper, we explore more advanced back-end techniques
for DSR. It is reported [8] that deep LSTM (DLSTM) RNNs help
improve generalization and often outperform single-layer LSTM
RNNs. However, DLSTM RNNs are harder to train and slower to
converge. In this paper, we extend DLSTM RNNs by introducing
a gated direct connection between memory cells of adjacent layers.
These direct links, called highway connections, provide a path for
information to flow between layers more directly without decay.
It alleviates the gradient vanishing problem and enables DLSTM
RNNs training with virtually arbitrary depth. Here, we refer to an
LSTM RNN with highway connections as HLSTM RNN.

∗Part of the work reported here was carried out during the 2015 Jelinek
Memorial Summer Workshop on Speech and Language Technologies at the
University of Washington, Seattle, and was supported by Johns Hopkins Uni-
versity via NSF Grant No IIS 1005411, and gifts from Google, Microsoft
Research, Amazon, Mitsubishi Electric, and MERL.

To further improve the performance, we also introduce the
latency-controlled bidirectional LSTM (LC-BLSTM) RNNs. In
the LC-BLSTM RNNs, the past history is fully exploited similar
to that in the unidirectional LSTM RNNs. However, unlike the
standard BLSTM RNNs which can start model evaluation only af-
ter seeing the whole utterance, the LC-BLSTM RNNs only look
ahead for a fixed number of frames which limits the latency. The
LC-BLSTM can be much more efficiently trained than the standard
BLSTM without performance loss. It also trains and decodes faster
than context-sensitive-chunk BLSTMs [13] which can only access
limited past and future context.

Our study is conducted on the AMI single distant microphone
(SDM) setup. We compare the standard (B)LSTM RNNs and high-
way (B)LSTM RNNs with 3 and 8 layers. We show that the highway
(B)LSTM RNNs with dropout applied to the highway connection
significantly outperform the standard (B)LSTM RNNs. The high
way connection helps to train deeper networks better and the high-
way (B)LSTM RNNs seem to benefit more from sequence discrim-
inative training. Overall, our proposed model decreased WER by
15.7% over DNNs, 14.4% over CNNs [14], and 5.3% over DLSTM
RNNs relatively. To our best knowledge, the 43.9/47.7% WER we
achieved on the AMI (SDM) dev and eval sets is the best results
reported on this task.1.

The rest of the paper is organized as follows. In Section 2 we
briefly discuss related work. In Section 3 we introduce standard DL-
STM RNNs, BLSTM RNNs, and the highway (B)LSTM RNNs. In
Section 4 we describe LC-BLSTM and the way to train such mod-
els efficiently with both frame and sequence discriminative criteria.
We summarize the experimental setup in Section 5 and report exper-
imental results in Section 6. Conclusions are reiterated in Section
7.

2. RELATED WORK

After developing the highway LSTMs independently we noticed that
similar work has been done in [16, 17, 18]. All of these works share
the same idea of adding gated linear connections between different
layers. The highway networks proposed in [16] adaptively carry
some dimensions of the input directly to the output so that infor-
mation can flow across layers much more easily. However, their
formulation is different from ours and their focus is DNN. The work
in [17] share the same idea and model structure. [18] is more general
and uses a generic form. However, their task is on text e.g. machine
translation while our focus is distant speech recognition. In addi-
tion, we used dropout as the way to control the highway connections
which turns out to be critical for DSR.

1The tools and scripts used to produce the results reported in this paper are
publicly available as part of the CNTK toolkit[15], and anyone with access
to the data should be able to reproduce our results.
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Fig. 1. Highway Long Short-Term Memory RNNs

3. HIGHWAY LONG SHORT-TERM MEMORY RNNS

3.1. Long short-term memory RNNs

The LSTM RNN was initially proposed in [19] to solve the gradient
diminishing problem in RNNs. It introduces a linear dependence
between ct, the memory cell state at time t, and ct−1, the same
cell’s state at t − 1. Nonlinear gates are introduced to control the
information flow. The operation of the network follows the equations

it = σ(Wxixt +Wmimt−1 +Wcict−1 + bi) (1)
ft = σ(Wxfxt +Wmfmt−1 +Wcfct−1 + bf ) (2)
ct = ft � ct−1 + it � tanh(Wxcxt +Wmcmt−1 + bc) (3)
ot = σ(Wxoxt +Wmomt−1 +Wcoct + bo) (4)
mt = ot � tanh(ct) (5)

iteratively from t = 1 to T , where σ()̇ is the logistic sigmoid func-
tion, it, ft,ot, ct and mt are vectors to represent values at time t of
the input gate, forget gate, output gate, cell activation, and cell output
activation respectively. � denotes element-wise product of vectors.
W∗ are the weight matrices connecting different gates, and b∗ are
the corresponding bias vectors. All the matrices are full except the
matrices Wci,Wcf ,Wco from the cell to gate vector which is di-
agonal.

3.2. Deep LSTM RNNs

Deep LSTM RNNs are formed by stacking multiple layers of LSTM
cells. Specifically, the output of the lower layer LSTM cells yl

t is
fed to the upper layer as input xl+1

t . Although each LSTM layer
is deep in time since it can be unrolled in time to become a feed-
forward neural network in which each layer shares the same weights,
deep LSTM RNNs still outperform single-layer LSTM RNNs signif-
icantly. It is conjectured [8] that DLSTM RNNs can make better use
of parameters by distributing them over the space through multiple
layers. Note that in the conventional DLSTM RNNs the interaction
between cells in different layers must go through the output-input
connection.

3.3. HLSTM RNNs

The Highway LSTM (HLSTM) RNN proposed in this paper is illus-
trated in Figure 1. It has a direct gated connection (in the red block)
between the memory cells clt in the lower layer l and the memory
cells cl+1

t in the upper layer l + 1. The carry gate controls how
much information can flow from the lower-layer cells directly to the
upper-layer cells. The gate function at layer l + 1 at time t is

d
(l+1)
t = σ(b

(l+1)
d +Wl+1

xd x
(l+1)
t +wl+1

cd �c
(l+1)
t−1 +w

(l+1)
ld �clt), (6)

where b(l+1)
d is a bias term, W(l+1)

xd is the weight matrix connecting
the carry gate to the input of this layer. w

(L+1)
cd is a weight vector

from the carry gate to the past cell state in the current layer. w(L+1)
ld

is a weight vector connecting the carry gate to the lower layer mem-
ory cell. d(l+1) is the carry gate activation vectors at layer l + 1.

Using the carry gate, an HLSTM RNN computes the cell state
at layer (l + 1) according to

cl+1
t = d

(l+1)
t � clt + f

(l+1)
t � c

(l+1)
t−1

+ i
(l+1)
t � tanh(W

(l+1)
xc x

(l+1)
t +W

(l+1)
hc m

(l+1)
t−1 + bc), (7)

while all other equations are the same as that in the standard LSTM
RNNs as described in Eq. (1),(2),(4), and (5).

Thus, depending on the output of the carry gates, the highway
connection can smoothly vary its behavior between that of a plain
LSTM layer or simply passes its cell memory from previous layer.
The highway connection between cells in different layers makes in-
fluence from cells in one layer to the other more direct and can al-
leviate the gradient vanishing problem when training deeper LSTM
RNNs.

3.4. Bidirectional Highway LSTM RNNs

The unidirectional LSTM RNNs we described above can only ex-
ploit past history. In speech recognition, however, future contexts
also carry information and should be utilized to further enhance
acoustic models. The bidirectional RNNs take advantage of both
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past and future contexts by processing the data in both directions
with two separate hidden layers. It is shown in [6, 7, 13] that bidi-
rectional LSTN RNNs can indeed improve the speech recognition
results. In this study, we also extend the HLSTM RNNs from unidi-
rection to bidirection. Note that the backward layer follows the same
equations used in the forward layer except that t − 1 is replaced by
t+ 1 to exploit future frames and the model operates from t = T to
1. The output of the forward and backward layers are concatenated
to form the input to the next layer.

4. EFFICIENT NETWORK TRAINING

Nowadays, GPUs are widely used in deep learning by leverag-
ing massive parallel computations via mini-batch based training.
For unidirectional RNN models, to better utilize the parallelization
power of the GPU card, in [15], multiple sequences (e.g., 40) are
often packed into the same mini-batch. Truncated BPTT is usually
performed for parameters updating, therefore, only a small segment
(e.g., 20 frames) of each sequence has to be packed into the mini-
batch. However, when applied to sequence level training (BLSTM
or sequence training), GPU’s limited memory restricts the number
of sequences that can be packed into a mini-batch, especially for
LVCSR tasks with long training sequences and large model sizes.
One alternative way to speed up is using asynchronous SGD based
on a GPU/CPU farm [20]. In this section, we are more focused on
fully utilizing the parallelization power of a single GPU Card. The
algorithms proposed here can also be applied to a multi-GPU setup.

4.1. Latency-controlled bi-directional model training

To speed up the training of bi-direcctional RNNs, the Context-
sensitive-chunk BPTT (CSC-BPTT) is proposed in [13]. In this
method, a sequence is firstly split into chunks of fixed length Nc.
Then Nl past frames and Nr future frames are concatenated before
and after each chunk as the left and right context, respectively. The
appended frames are only used to provide context information and
do not generate error signals during training. Since each trunk can
be independently drawn and trained, they can be stacked to form
large minibatches to speed up training.

Unfortunately, the model trained with CSC-BPTT is no longer
the true bidirectional RNN since the history it can exploit is limited
by the left and right context concatenated to the chunk. It also in-
troduces additional computation cost during decoding since both the
left and right contexts need to be recomputed for each chunk.

To solve the problems in the CSC-BPTT we propose the latency-
controlled bi-directional RNNs. Different from the CSC-BPTT, in
our new model we carry the whole past history while still using a
truncated future context. Instead of concatenating and computing
Nl left contextual frames for each chunk we directly carry over the
left contextual information from the previous chunk of the same ut-
terance. For every chunk, both training and decoding computational
cost is reduced by a factor of Nl

Nl+Nc+Nr
. Moreover, loading the

history from previous mini-batch instead of a fixed contextual win-
dows makes the context exact when compared to the uni-directional
model. Note that the standard BLSTM RNNs come with significant
latency since the model can only be evaluated after seeing the whole
utterance. In the latency-controlled BLSTM RNNs the latency is
limited to Nr which can be set by the users. In our experiments, we
process 40 utterances in parallel which is 10 times faster than pro-
cessing the whole utterances without performance loss. Compared
to the CSC BPTT our approach is 1.5 times faster and often leads to
better accuracy.

4.2. Two-pass forward computation for sequence training

To increase the number of sequences that can be fit into a mini-batch,
we propose a two-forward-pass solution for sequence discriminative
training on top of recurrent neural networks. The basic idea is pretty
straightforward. For sequence training of recurrent models, we use
the same mini-batch packaging method as that in the cross-entropy
training case, i.e., we pack multiple sequences (e.g., 40) into the
same mini-batch, each with a small chunk (e.g., 20 frames). Then
in the first forward pass, we collect log-likelihood of frames in the
mini-batch, and put those into a pool, without updating the model.
We do this until we have collected the log-likelihood for a certain
number of sequences. At this point, we are able to compute the error
signal for each of the sequence in the pool. We then roll back the
mini-batches that we have just computed error signals for, and start
the second forward pass, this time we update the model using the
error signals from the pool. With this two-forward-pass solution, we
are able to pack far more sequences in the same mini-batch, e.g.,
40∼60, thus leading to much faster training.

5. EXPERIMENT SETUP

5.1. Corpus

We evaluated our models on the AMI meeting corpus [21]. The
AMI corpus comprises around 100 hours of meeting recordings,
recorded in instrumented meeting rooms. Multiple microphones
were used, including individual headset microphones (IHM), lapel
microphones, and one or more microphone arrays. In this work,
we use the single distant microphone (SDM) condition for our
experiments. Our systems are trained and tested using the split
recommended in the corpus release: a training set of 80 hours, a
development set and a test set each of 9 hours. For our training, we
use all the segments provided by the corpus, including those with
overlapped speech. Our models are evaluated on the evaluation set
only. NIST’s asclite tool [22] is used for scoring.

5.2. System description

Kaldi [23] is used for feature extraction, early stage triphone training
as well as decoding. A maximum likelihood acoustic training recipe
is used to trains a GMM-HMM triphone system. Forced alignment
is performed on the training data by this triphone system to generate
labels for further neural network training.

The Computational Network Toolkit (CNTK) [15] is used for
neural network training. We start off by training a 6-layer DNN,
with 2, 048 sigmoid units per layer. 40-dimensional filterbank fea-
tures, together with their corresponding delta and delta-delta features
are used as raw feature vectors. For our DNN training we concate-
nated 15 frames of raw feature vectors, which leads to a dimension
of 1, 800. This DNN again is used to force align the training data to
generate labels for further LSTM training.

Our (H)LSTM models, unless explicitly stated otherwise, are
added with a projection layer on top of each layer’s output, as pro-
posed in [8], and are trained with 80-dimensional log Mel filterbank
(FBANK) features. For LSTMP models, each hidden layer consists
of 1024 memory cells together with a 512-node projection layer. For
the BLSTMP models, each hidden layer consists of 1024 memory
cells (512 for forward and 512 for backward) with a 300-node pro-
jection layer. Their highway companions share the same network
structure, except the additional highway connections.

All models are randomly initialized without either generative or
discriminative pretraining [24]. A validation set is used to control
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the learning rate which will be halved when no gain is observed.
To train the unidirectional model, the truncated back-propagation-
through-time (BPTT) [25] is used to update the model parameters.
Each BPTT segment contains 20 frames and we process 40 utter-
ances simultaneously. To train the latency-controlled bidirectional
model, we setNc = 22 andNr = 21 and also process 40 utterances
simultaneously. A start learning rate of 0.2 per minibatch is used
and then the learning rate scheduler takes action. For frame level
cross-entropy training, L2 constraint regularization [26] is used. For
sequence training, L2 constraint regularization is also applied when-
ever it is used in the corresponding cross-entropy trained model. We
use a fixed per sample learning rate of 1e − 5 for DNN sequence
training, and 2e− 6 for LSTM sequence training.

6. RESULTS

The performance of various models are evaluated using word error
rate (WER) in percent below. All the experiments are conducted on
AMI SDM1 eval set, if not specified otherwise. Since we do not
exclude the overlapping speech segments during model training, in
addition to results on the full eval set, we also show results on a
subset that only contains the non-overlapping speech segments as
[14].

6.1. 3-layer Highway (B)LSTMP

System #Layers with overlap no overlap
DNN 6 57.5 48.4
LSTMP 3 50.7 41.7
HLSTMP 3 50.4 41.2
BLSTMP 3 48.5 38.9
BHLSTMP 3 48.3 38.5

Table 1. Performance of highway (B)LSTMP RNNs

Table 1 gives WER performance of the 3-layer LSTMP and
BLSTMP RNNs, as well as their highway versions. The perfor-
mance of the DNN network is also listed for comparison. From the
table, it’s clear that the highway version of the LSTM RNNs con-
sistently outperform their non-highway companions, though with a
small margin.

6.2. Highway (B)LSTMP with dropout

System #Layers with overlap no overlap
LSTMP 3 50.7 41.7
HLSTMP + dropout 3 49.7 40.5
BLSTMP 3 48.5 38.9
BHLSTMP + dropout 3 47.5 37.9

Table 2. Performance of highway (B)LSTMP RNNs with dropout

Dropout is applied to the highway connection to control its flow:
a high dropout rate essentially turns off the highway connection, and
a small dropout rate, on the other hand, keeps the connection alive.
In our experiments, for early training stages, we use a small dropout
rate of 0.1, and increase it to 0.8 after 5 epochs of training. Per-
formance of highway (B)LSTMP networks with dropout is shown in
Table 2, as we can see, dropout helps to further bring down the WER
for highway networks.

6.3. Deeper highway LSTMP

System #layers with overlap no overlap
LSTMP 3 50.7 41.7
LSTMP 8 52.6 43.8
HLSTMP 3 50.4 41.2
HLSTMP 8 50.7 41.3

Table 3. Comparison of shallow and deep networks

When a network goes deeper, the training usually becomes dif-
ficult. Table 3 compares the performance of shallow and deep net-
works. From the table we can see that for a normal LSTMP network,
when it goes from 3 layers to 8 layers, the recognition performance
degrades dramatically. For the highway network, however, the WER
only increase a little bit. The table suggests that the highway con-
nection between LSTM layers allows the network to go much deeper
than the normal LSTM networks.

6.4. Highway LSTMP with sequence training

System (dr: dropout) #Layers with overlap no overlap
DNN 6 57.5 48.4
DNN + sMBR 6 54.4 44.7
LSTMP 3 50.7 41.7
LSTMP + sMBR 3 49.3 39.8
HLSTMP 3 50.4 41.2
HLSTMP + sMBR 3 48.3 38.4
HLSTMP (dr) + sMBR 3 47.7 38.2
LSTMP 8 52.6 43.8
LSTMP + sMBRR 8 50.5 41.3
HLSTMP 8 50.7 41.3
HLSTMP + sMBR 8 47.9 37.7

Table 4. Performance of sequence training on various networks

We perform sequence discriminative training for the networks
discussed in Section 4.2. Detailed results are shown in Table 4.
The table suggests that introducing the highway connection between
LSTMP layers is beneficial to sequence discriminative training. For
example, without the highway connection, sequence training on top
of the 3-layer LSTMP network brings WER from 50.7 down to 49.3,
a relative improvement of only 3% on this particular task. After in-
troducing the highway connection and dropout, the improvement is
from 50.4 to 47.7, 5% relatively. The relative improvement is even
larger on the non-overlapping segment subset, which is roughly 7%.
The results suggest that sequence training is beneficial from both
highway connection and a deeper structure.

7. CONCLUSION

We presented a novel highway LSTM network, and applied it to a
far-field speech recognition task. Experimental results suggest that
this type of network consistently outperforms the normal (B)LSTMP
networks, especially when dropout is applied to the highway con-
nection to control the connection’s on/off state. Further experiments
also suggest that the highway connection allows the network to go
much deeper, and to get larger benefit from sequence discriminative
training.
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