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ABSTRACT
This paper presents multi-pass feature enhancement technique that
consists of three processing passes. In the proposed method, the first
pass was described in our previous work, and consists of model-
based feature enhancement realized by employing a generative-
discriminative hybrid approach with Gaussian mixture models and
deep neural networks (DNNs). As an extension of the previous
work, the second pass of the proposed method utilizes DNNs re-
trained with iterative realignment and auxiliary features obtained
from intermediate parameters of the first processing pass. In the
third pass, we apply unsupervised DNN adaptation and system com-
bination to the results of the second pass. Therefore, the proposed
multi-pass technique realizes stepwise improvements in feature en-
hancement. For CHiME3 task evaluations, the proposed method
provided noticeable improvements in noisy speech recognition ac-
curacy compared with results obtained using the previous one-pass
feature enhancement technique.

Index Terms— multi-pass feature enhancement, deep neural
networks, auxiliary features, unsupervised DNN adaptation

1. INTRODUCTION

The increasing use of mobile devices with speech applications in var-
ious environments means that noise robustness has become a crucial
problem in relation to automatic speech recognition (ASR). With a
view to realizing noise robust ASR, frontend processing including
noise suppression and feature enhancement is the simplest way to
improve ASR performance in noisy environments. The research and
development of frontend processing have been widely pursued using
both traditional approaches [1, 2, 3, 4, 5] and recent deep neural net-
work (DNN)-based approaches e.g., a DNN bottleneck feature [6], a
denoising autoencoder (DAE) [7, 8, 9], and DNN-based ideal binary
masking [10, 11]. Of these various techniques, we have been focus-
ing on feature enhancement, and have already proposed a technique
based on a generative-discriminative hybrid approach, which incor-
porates the benefits of both Gaussian mixture models (GMMs) and
DNNs [12].

The aforementioned frontend processing is usually effective for
a DNN-hidden Markov model (HMM)-based ASR system trained
using clean data; however, it cannot significantly improve to an ASR
system with multi-condition training [13]. On the contrary, is some-
times degrades ASR performance with multi-condition training.
Thus, this fact suggests that it is difficult to achieve ASR improve-
ment solely with frontend feature enhancement. On the other hand,
various training techniques for DNN-based ASR backend have been
proposed to overcome this problem including noise adaptive train-
ing [14], DNN adaptation [15, 16, 17, 18], and the use of auxiliary
features [14, 19, 20, 21]. Among these techniques, DNN training
with auxiliary features provides a noticeable improvement in ASR
performance. To provide a training scheme with noise awareness,

[19] includes the estimated mean vector of the noise in the primary
features. This technique is called noise-aware training. [14] investi-
gates the use of various features as alternatives to the noise feature.
If we can use multi-channel data, the multi-channel feature will
help improve ASR performance [20, 22, 23]. The i-vector input,
which is related to speaker awareness, also provides positive results
[21, 24, 25].

Inspired by these successful studies of DNN-based ASR back-
end, in this paper, we explore the effect of incorporating this backend
processing in DNN-based frontend processing. Consequently, we
propose a multi-pass feature enhancement technique based on the
generative-discriminative hybrid approach, which refines the DNNs
of the frontend processing at each processing pass. Fig. 1 shows the
processing flow of the proposed method. As can be seen in Fig. 1,
the proposed method consists of three passes. The first pass is equiv-
alent to our previously proposed generative-discriminative hybrid
approach. As an extension of the previous work, the second pass
utilizes DNNs retrained with iterative DNN-based realignment and
auxiliary features obtained from intermediate parameters of the first
pass processing. This processing refines the DNNs for feature en-
hancement, and provides significant improvements in ASR perfor-
mance. The thirs pass employs unsupervised DNN adaptation and
system combination. The third pass also refines the DNNs by using
unsupervised adaptation, and combines the results obtained with the
second pass and the unsupervised DNN adaptation of the third pass.
In this paper, we employed the simple posterior interpolation-based
approach [11] for the system combination. With these processing
techniques, we prove that our proposed multi-pass feature enhance-
ment approach outperforms the conventional method and the previ-
ously proposed one-pass processing technique.

2. REVIEW OF FEATURE ENHANCEMENT BASED ON
GENERATIVE-DISCRIMINATIVE HYBRID APPROACH

This section reviews our previous work, i.e., feature enhancement
based on a generative-discriminative hybrid approach with GMMs
and DNNs [12]. This part is equivalent to the first pass in Fig. 1.

2.1. GMMs and DNN for feature enhancement
With the proposed method, speech is modeled by using a speaker in-
dependent GMM with J Gaussians components in theD-dimensional
log mel-filter bank (LMFB) domain. Then, global bias adaptation
[26] is applied to the speech GMM, i.e., μ̂S,j = μS,j + b, where
μS,j , μ̂S,j and b denote the mean vector of the speech GMM, the
adapted mean vector and the bias vector, respectively. j denotes the
Gaussian index of the speech GMM.

The speech DNN with L hidden layers and J output nodes is
trained by using the alignment labels of the training data, which give
the index sequence of the most likely Gaussian component at the t-th
frame [12]. By using these alignment labels, each output node of the
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Fig. 1. Processing flow of proposed multi-pass feature enhancement

speech DNN can correspond to each Gaussian component contained
in the speech GMM.

With internal processing, the noise is also modeled by using a
GMM with K Gaussian components in the LMFB domain.

2.2. Mismatch function and GMM composition
With the LMFB vectors of the speech St and the noise N t at the
t-th frame, the LMFB vector of the observed signal Ot is derived by
the following mismatch function,

Ot = St + log (1 + exp (N t − St)) , (1)

where log(·) and exp(·) are element-wise operations. Based on this
mismatch function, the GMM parameters of the observed signal are
obtained by using first-order vector Taylor series (VTS) composition
[3] with the GMM parameters of the speech and the noise.

2.3. Computation of discriminative posterior probability
After the GMM composition, the posterior probability w.r.t. the
GMM of the observed signal PO,t,j,k is computed. Then, the pos-
terior probability w.r.t. the speech GMM PS,t,j and the posterior
probability w.r.t. the noise GMM PN,t,k are given by marginalizing
PO,t,j,k as follows:

PS,t,j =
∑

k

PO,t,j,k, PN,t,k =
∑

j

PO,t,j,k , (2)

where k denotes the Gaussian index of the noise GMM.
With Eq. (2), PO,t,j,k is joint probability of PS,t,j and PN,t,k,

i.e., PO,t,j,k = PS,t,j · PN,t,k. Here, since unsupervised estimation
of the noise DNN is currently difficult using only a given observa-
tion, we employ the GMM posterior probability PN,t,k for the noise.
On the other hand, the posterior probability w.r.t. speech is given by
the softmax output of the speech DNN P

(DNN)
S,t,j instead of the GMM

posterior probability PS,t,j . Therefore, the discriminative posterior
probability P

(DNN)
O,t,j,k is derived as:

P
(DNN)
O,t,j,k = P

(DNN)
S,t,j · PN,t,k . (3)

2.4. Parameter estimation with MMSE estimates
With the method, the target parameters are bias vector b for speaker
adaptation and the parameters of the noise GMM. Each parameter is
estimated by using the EM algorithm with the MMSE estimates of
the speech S̃t and the noise Ñ t derived as:

S̃t = Ot +
∑

j,k

P
(DNN)
O,t,j,k · (μ̃S,j − μO,j,k

)
(4)

Ñ t = Ot +
∑

j,k

P
(DNN)
O,t,j,k · (μN,k − μO,j,k

)
, (5)

where μO,j,k and μN,k denote mean vectors of GMMs of the ob-
served signal and the noise, respectively.

With S̃t and Ñ t, the target parameters are estimated with maxi-
mum likelihood criteria. The accuracies of the MMSE estimates and
the target parameters will be mutually improved when the processes
are iterated until convergence. The feature enhancement result is ob-
tained as an MMSE estimate S̃t at the final iteration. The parameter
estimation method is described in further detail in [12, 27].

3. MULTI-PASS FEATURE ENHANCEMENT

This section describes the extensions of the previous work, i.e., the
second and third passes indicated in Fig. 1.

3.1. Second pass: DNN retraining and auxiliary features
The second pass consists of DNN retraining with realignment labels
and the use of auxiliary features.

3.1.1. DNN-based realignment
Although the speech DNN used in the first pass is trained by using
alignment labels, which are obtained with the speech GMM, the use
of the DNN will improve the accuracy of the alignment labels thanks
to its prominent discriminative ability. Thus, we investigate a way
of retraining the speech DNN with the DNN-based realignment la-
bels Lab(DNN)

t given by Eq. (6). Then, further improvement can be
expected while iterating DNN-based realignment and retraining.

Lab
(DNN)
t = argmax

j
P

(DNN)
S,t,j (6)

3.1.2. Auxiliary features
As mentioned in [19, 21], the use of auxiliary features, e.g., esti-
mated noise features or i-vectors, provides a noticeable improvement
in the DNN-based ASR system. Thus, we also investigate a way
of introducing auxiliary features into DNN-based feature enhance-
ment. In this paper, the primary features for feature enhancement
are the observed signal Ot and their first and second order deriva-
tives. To ensure environmental robustness, we append intermediate
feature enhancement parameters, i.e., mean vectors of the speech and
the noise, to the primary features as shown in Eqs. (7) and (8). These
auxiliary features will offer awareness of both speaker and noise for
learning the relationship between the primary feature, the speaker,
and the noise.

μ̂S =
1

T

∑

t

S̃t, μ̂N =
1

T

∑

t

Ñ t (7)

xt � {Ot−τ , . . . ,Ot, . . . ,Ot+τ , μ̂S , μ̂N} , (8)

where T , xt, and τ denote the entire number of frames, the extended
input vector of DNNs, and the length of the context window, respec-
tively. In Eq. (8), the first and second order derivatives of Ot are
omitted for simplification.

3.2. Third pass: DNN adaptation and system combination
After the second pass, the third pass applies unsupervised DNN
adaptation and system combination to feature enhancement.

3.2.1. Unsupervised DNN adaptation
Unsupervised DNN adaptation is applied to retrained DNNs of the
second pass to mitigate the mismatch and the distortion caused by
differences in speakers and noise environments. In this adaptation,
we simply retrain the input layer or all the layers of the retrained
DNN by using alignment labels obtained from evaluation data. The
DNN parameters are updated by iterating a stochastic gradient de-
scent (SGD) with a small learning rate value [15].
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3.2.2. System combination with posterior interpolation
In [11], the posterior (softmax output) level combination of two dif-
ferent systems provides positive ASR improvements even with a
simple implementation. To obtain further improvement, we also look
at a way of combining two feature enhancement passes by interpolat-
ing softmax outputs obtained with the retrained DNN (second pass)
and the adapted DNN (third pass) as follows:

P
(DNN)
Int,t,j = α · P (DNN)

Ret,t,j + (1− α) · P (DNN)
Ada,t,j , (9)

where P (DNN)
Int,t,j , P (DNN)

Ret,t,j , and P
(DNN)
Ada,t,j denote the softmax outputs

obtained by using interpolation, the retrained DNN, and the adapted
DNN, respectively. The interpolation weight α is set at α = [0, 1].

4. EXPERIMENTS

4.1. Experimental setup
ASR evaluations were carried out using the CHiME3 task [28]. The
CHiME-3 corpus consists of real six-channel audio data collected
in four different environments and additional simulated six-channel
data. A tablet device with six microphones was used for audio
recording to simulate a situation where a user is talking to the de-
vice in daily environments. The considered environments are public
transport (BUS), a cafeteria (CAF), a pedestrian area (PED), and a
street junction (STR). The corpus includes only read speech, where
the sentences to be read were taken from the WSJ0 corpus [29]. The
training set comprises 1,600 real and 7,138 simulated utterances,
which amount to 18 hours of speech. The development and evalu-
ation sets consist of 3,280 and 2,640 utterances, respectively, each
containing real and simulated data at a fifty-fifty split. Both the
real and simulated parts were spoken by four different speakers. In
this paper, we evaluated several single-channel feature enhancement
methods, thus, we used audio data collected by a fifth microphone,
which was the closest microphone to the speaker.

The feature parameters for feature enhancement were 24 LMFBs
that were extracted by using a Hamming window with a 25 ms frame
length and a 10 ms frame shift. The speech GMM was trained by us-
ing the clean training data. The GMM had J = 512 Gaussian com-
ponents. The number of Gaussian components of the noise GMM
was set at K = 1, . . . , 4. Then, we also trained the speech DNN
for the feature enhancement by using the simulated training data.
The feature parameters of the DNN were the utterance-wise mean
and variance normalized 24 LMFBs and their first and second order
derivatives. A context window with τ = 5 was applied to each utter-
ance. We trained five DNNs by changing the number of hidden lay-
ers with L = 1, . . . , 5. Each hidden layer had 2,048 nodes and the
output layer had J = 512 nodes, which correspond to the Gaussian
components contained in the speech GMM. The DNNs were initial-
ized by discriminative pre-training with layer-wise back propagation
[30]. After the pre-training, the DNN was obtained by fine-tuning
with the GMM alignment labels described in Sec. 2.1.

The ASR evaluations were carried out by using a DNN-HMM
system. In the training stage, we first built a GMM-HMM system
with both the real and simulated training data. The GMM-HMMs
were modeled with 3-state tied-mixture triphone HMMs. There were
a total of 5,976 HMM states. Each state had 16 Gaussian compo-
nents. The feature parameters of the GMM-HMMs consisted of
12 PLPs [31], log energy, and their first and second order deriva-
tives. Mean normalization was applied to each utterance. With these
GMM-HMMs, we applied HMM state alignment to the training data.
After HMM state alignment, we built a DNN-HMM system with
discriminative pre-training and fine-tuning. Then, a development set
was used for cross validation in fine-tuning. The DNN consisted of
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five hidden layers. The feature parameters and topology of the hid-
den layer were the same as those of the DNN for feature enhance-
ment; however, the output layer had 5,976 nodes that corresponded
to the HMM states. In all the evaluations reported in this paper, the
ASR experiments were performed by using fully composed tri-gram
weighted finite state transducers [32] with the DNN-based acoustic
model. The evaluation criterion was the word error rate (WER).

4.2. Experimental results of first pass
In this section, we evaluate the first pass in Fig. 1 (MMSE-DNN
[12]) by comparison with three conventional methods, i.e., VTS,
DAE, and feature enhancement with only the GMM posterior prob-
ability (MMSE-GMM [27]).

The adjustable parameters of each method are the numbers of
Gaussian components K contained in the noise GMM and hidden
layers L of DNN for speech enhancement and DAE. Fig. 2 shows
the average WERs for MMSE-DNN with various model structures.
As seen in the figure, the WERs tend to improve when both K and L
are increased. The parameter values that give the best average WER
for each method were L = 2 for DAE, K = 1 for MMSE-GMM,
and K = 4, L = 3 for MMSE-DNN, respectively.

Table 1 shows the detailed results of each method and each
noise environment. As seen in Table 1, the results obtained with the
MMSE-DNN were the best even though other methods deteriorate
the WERs from the baseline. As already discussed in [12], these
results prove again that discriminative posterior probability must
be used for accurate feature enhancement. Thus, the architecture
of MMSE-DNN is highly beneficial for improving a DNN-based
ASR system with single channel feature enhancement. Hereafter,
the MMSE-DNN parameters were fixed at K = 4 and L = 3.

4.3. Experimental results of second pass
In the second pass, we first evaluated DNN retraining with the DNN
realignment labels given by Eq. (6). Fig. 3 shows the average WERs
for the retrained DNNs with iterative realignment. In Fig. 3, we can
see that the average WER has already been improved at the first re-
alignment. Subsequently, further improvements were obtained while
iterating realignment and retraining.

We also evaluated auxiliary features. As mentioned in Sec. 3.1.2,
we introduced the mean vectors of the speech μ̂S and the noise μ̂N

to incorporate the awareness of both speaker and noise in feature
enhancement. Table 2 shows the detailed results for the second pass.
As can be seen, the auxiliary features steadily improved the WERs,
in particular, the use of both the speech and noise auxiliary features
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Table 1. ASR results for each feature enhancement with WER (%). MMSE-DNN shows results with the first pass of the proposed method.
Simulated data Real data Total

Feature enhancement Avg. BUS CAF PED STR Avg. BUS CAF PED STR avg.
Baseline (w/o feature enhancement) 15.04 12.61 17.54 14.70 15.30 23.07 32.49 25.07 18.42 16.29 19.05
VTS 15.59 14.08 18.40 14.33 15.54 23.73 34.17 25.94 18.40 16.40 19.66
DAE (L = 2) 15.40 13.65 18.14 14.34 15.45 24.80 36.77 25.25 18.87 18.32 20.10
MMSE-GMM (K = 1) 15.16 13.04 17.89 14.36 15.35 23.69 33.65 25.72 18.55 16.83 19.42
MMSE-DNN (K = 4, L = 3) 14.65 12.42 17.37 13.80 15.02 22.87 33.03 24.65 17.81 15.99 18.76

Table 2. ASR results for the second pass with WER (%)
Auxiliary Simulated data Real data Total

Realignment feature Avg. BUS CAF PED STR Avg. BUS CAF PED STR avg.
— — 14.65 12.42 17.37 13.80 15.02 22.87 33.03 24.65 17.81 15.99 18.76

5 iterations — 14.59 12.66 17.02 13.99 14.68 22.22 32.32 23.76 17.30 15.50 18.40
— μ̂S 14.47 12.63 16.90 13.88 14.48 22.31 32.68 23.65 17.49 15.41 18.39
— μ̂N 14.65 12.85 16.75 14.03 14.96 22.56 32.87 24.39 17.30 15.67 18.60
— μ̂S , μ̂N 14.47 12.38 16.62 13.86 15.02 22.27 32.49 23.89 17.19 15.52 18.37

5 iterations μ̂S , μ̂N 14.23 11.99 16.60 13.58 14.76 21.83 32.01 23.12 16.95 15.24 18.03

Table 3. ASR results for the third pass with WER (%)
System Simulated data Real data Total

DNN Adaptation combination Avg. BUS CAF PED STR Avg. BUS CAF PED STR avg.
— — 14.23 11.99 16.60 13.58 14.76 21.83 32.01 23.12 16.95 15.24 18.03

Input layer, 5 epochs — 14.05 11.94 16.42 13.49 14.36 21.75 31.56 23.38 17.02 15.05 17.90
All layers, 5 epochs — 14.10 12.01 16.27 13.52 14.61 21.77 31.71 23.27 17.06 15.05 17.94
Input layer, 5 epochs α = 0.7 14.07 11.84 16.45 13.43 14.57 21.71 31.69 23.14 17.08 14.92 17.89
All layers, 5 epochs α = 0.7 14.03 11.86 16.16 13.60 14.49 21.71 31.65 23.22 17.04 14.92 17.87

provided noticeable improvements. Moreover, further improve-
ments were obtained by using both DNN retraining and auxiliary
features without offsetting each other.

In this paper, to explore the use of the intermediate parameters
of an MMSE-DNN, we employed the mean vector of the speech μ̂S

as the auxiliary feature, which employs speaker awareness. As a rep-
resentative speaker aware training technique, i-vector is widely used
for the speech auxiliary feature, and provides noticeably improved
performance [17, 21, 24, 25]. Therefore, we will investigate the use
of i-vector together with the auxiliary features used in this paper.

4.4. Experimental results of third pass
Finally, we carried out evaluations with the third pass. The first eval-
uation was the unsupervised DNN adaptation described in Sec. 3.2.1.
DNN adaptation was applied to the input layer or all the layers of the
retrained DNN obtained with the second pass, then the total numbers
of SGD iterations were set at one, five, and ten epochs. Although
only the use of speaker labels is allowed in the evaluation phase of
the CHiME3 task, we compared the adaptation scheme by using both
speaker and noise labels.

As seen in Figs. 4(a) and 4(b), the results with labels of speaker
and/or noise outperform those without any labels. In particular,
adaptation with both speaker and noise labels provides noticeable
improvements. Therefore, we can confirm that the use of the specific
DNNs, which are precisely adapted to individual speaker and noise
condition, is crucial factor for DNN-based feature enhancement.
However, since CHiME3 task only allows the use of speaker labels,
we employed the adapted DNNs with speaker labels, hereafter.

Fig. 5 shows the average WERs for system combination with
posterior interpolation. In the figure, the results with α = 1 and
α = 0 are equivalent to the results of the second pass and unsu-
pervised DNN adaptation with five epochs, respectively. As shown
in Fig. 5, we can see that system combination provided further im-
provements if we chose a suitable interpolation weight α.

Table 3 shows the detailed results for the third pass. As seen in
Table 3, improvements from the second pass and the third pass were

w/o adaptation Adaptation w/o speaker and noise labels Adaptation w/ speaker labels

Adaptation w/ noise labels Adaptation w/ speaker and noise labels

(a) Input layer adaptation (b) All layers adaptation
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not necessarily significant. However, steady improvements were ob-
tained with unsupervised DNN adaptation and system combination.

5. CONCLUSIONS

This paper described the noticeable improvements realized for
DNN-based noise robust ASR by using a multi-pass feature en-
hancement scheme. The largest impact on the improvement was
provided by the second pass, which includes DNN retraining with
the realignment labels and auxiliary features obtained by the internal
processing of the first pass. However, the steady contributions of
the third pass were also indispensable. This work mainly investi-
gated frontend feature enhancement. In future, we plan to introduce
various backend processing methods into DNN-based noise robust
ASR, and will investigate a way to integrate the processing of the
frontend and the backend.
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