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ABSTRACT

In the recent years, discriminative models have become a very

attractive utility and gained a lot of attention in the speech

research community, encompassing both front and back-end

methods, thanks to their prominent discriminative power

and the availability of improved training strategies. When it

comes to the recognition of speech that is distorted by highly

non-stationary environmental noise, robust front and back-

end methods are required in order to achieve a satisfactorily

high speech recognition performance. Furthermore, when

dealing with severe noise conditions, multi-channel front-end

methods can be advantageous for suppressing environmental

background noise, as compared to single-channel methods.

In this work, we improve an existing multi-channel noise

reduction approach, referred to as DOminance-based Loca-

tional and Power-spectral cHaracteristics INtegration (DOL-

PHIN), by using a generative-discriminative hybrid model,

that makes use of spatial and spectral features. We show that

the proposed method outperforms the existing DOLPHIN ap-

proach, which is solely based on generative models, in terms

of the word error rate reduction achieved on the CHiME-3

challenge data.

Index Terms— Speech recognition, multi-channel noise

reduction, generative-discriminative hybrid models.

1. INTRODUCTION

When an automatic speech recognition (ASR) system cap-

tures a speech signal in noisy environments, the performance

of ASR degrades due to the noise included in the captured

signal. Although it has recently been shown that the use of

deep neural network acoustic models (DNN-AMs) greatly

improves the noise robustness of ASR, the performance is

still not satisfactory under severe noise conditions [1, 2, 3, 4].

To mitigate such noise influence on ASR, a generative

model-based (single-channel) noise reduction approach has

been extensively studied [5, 6, 7, 8]. With this approach,

a Gaussian mixture model (GMM), referred to as a speech

GMM, is trained in advance on clean speech spectral fea-

tures. Then, for given noisy speech, this approach estimates

posteriors of Gaussians in the speech GMM that correspond

to the unknown clean speech spectral features, and estimates

the clean speech spectral features based on the estimated pos-

teriors. This approach has shown to improve the ASR per-

formance when we use a DNN-AM trained on clean speech

features, but it is not the case when we use a more robust AM,

namely a DNN-AM trained on multi-condition data [9].

A major problem that limits the performance of the

above approach lies in its poor accuracy of estimating the

clean speech Gaussian posteriors from the noisy speech.

To solve this problem, a new approach, referred to as a

generative-discriminative hybrid approach, has recently been

proposed [9, 10], and shown to improve the ASR performance

even with a multi-condition DNN-AM. With this approach,

e.g., in [9], a DNN for Gaussian posterior estimation is used

jointly with the speech GMM. The DNN is trained in advance

so that it can estimate Gaussian posteriors in the speech GMM

from noisy speech, and then from given noisy speech, clean

speech features are estimated using Gaussian posteriors ob-

tained using the DNN. Because the accuracy of the Gaussian

posterior estimation is improved using the DNN, the accuracy

of noise reduction as a whole is also improved.

In this paper, we propose to extend an existing genera-

tive model-based multi-channel noise reduction approach,

referred to as DOminance-based Locational and Power-

spectral cHaracteristics INtegration (DOLPHIN) [11], using

the generative-discriminative hybrid approach. DOLPHIN

utilizes not only the spectral features of the signals but also

the spatial features of the signals that can be derived from

multi-channel microphone signals. Based on both types of

features, a set of parameters are estimated, which are referred

to as soft masks and indicate whether speech is stronger than

noise at individual time frequency bins, and used to estimate

clean speech spectral features more accurately than a single

channel generative approach. For the proposed generative-

discriminative hybrid approach, we extend DOLPHIN by

replacing its soft mask estimation block with a DNN based
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estimation block, referred to as DNN-SME, to estimate the

speech spectral features more accurately. We show that the

extended DOLPHIN, referred to as DOLPHIN-DNN in this

paper, outperforms DOLPHIN in terms of the word error rate

(WER) reduction using the CHiME-3 challenge dataset.

2. RELATED WORK

Multi-channel linear filtering has been extensively studied

as a technique to enhance noisy speech signals for the cases

where multi-channel signals are available. In particular, dere-

verberation and beamforming based on linear filtering have

been shown to be very effective to improve the robustness

of ASR with multi-condition DNN-AMs [12, 13]. How-

ever, even after performing such filtering, certain amount

of residual noise inevitably remains, and substantially lim-

its the improvement of the ASR performance. For reducing

such noise, nonlinear noise reduction needs to be applied,

which generally degrade the performance of ASR with multi-

condition DNN-AMs. In contrast, as shown in this paper,

DOLPHIN-DNN can improve the performance of ASR with

multi-condition DNN-AMs by nonlinear noise reduction, and

thus could be complementary with the multi-channel linear

filtering techniques.

Denoising autoencoder (DAE) could also be an alternative

to DOLPHIN-DNN as a method that performs nonlinear noise

reduction for single and multi-channel audio signals [14, 15].

However, based on our best knowledge, it has been reported

that the ASR performance improvement by DAE is very lim-

ited when we use ASR with multi-condition DNN AMs [9].

3. IMPROVING DOLPHIN USING A

GENERATIVE-DISCRIMINATIVE HYBRID

APPROACH

One crucial step of the DOLPHIN algorithm is given by the

estimation of spectral masks, referred to as posteriors of dom-

inant source indices (DSI) in [11], which is—in its origi-

nal form—based on a generative model approach, using spa-

tial and spectral features. Hence, the overall performance of

DOLPHIN is naturally defined by the accurateness of the es-

timated spectral masks.

As discriminative model approaches have proven to be

superior for various class discrimination problems as com-

pared to generative approaches (cf. [9]), we propose to re-

place DOLPHIN’s generative mask estimation algorithm by a

DNN, in order to make ASR more robust under severe noise

conditions when used in combination with DOLPHIN as a

front-end method.

3.1. System Overview

Figure 1 provides a fundamental overview of the DOLPHIN

system. Due to the space limitations of this paper, we refer
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Fig. 1: Overview of the original DOLPHIN system.

the interested reader to [11] for a detailed discussion of the

original DOLPHIN approach.

The single-channel signal x
(c′)
t represents the noisy in-

put to DOLPHIN that shall be enhanced, with t denoting the

frame time, and it is simply given by the observation signal

of a single (pre-selected) microphone channel c. x
(c′)
t is then

transformed into the log-Mel spectral domain, yielding Xt,m,

where m is the index of the Mel frequency band1.

At the same time, a spatial clustering is applied to the

multi-channel noisy observation x
(c)
t that yields the param-

eters of a generative spatial model Θξ as well as an initializa-

tion for the Mel spectral soft mask M̂0
t,m.

The soft mask M̂t,m and the parameters of the spec-

tral model ΘX are then iteratively updated by means of the

expectation-maximization (EM) algorithm and used for en-

hancing the noisy observation Xt,m. The enhanced features

Ŝt,m are then used for reconstructing the single-channel sig-

nal ŝt, which represents the noise reduced version of x
(c′)
t . A

detailed description of the parameter estimation procedure of

the DOLPHIN algorithm is given in [11].

3.2. DOLPHIN-DNN

Several methods for estimating time-frequency masks by

means of DNNs have been reported (e.g., [16, 17]). Inspired

by these methods, we propose DOLPHIN-DNN that repre-

sents an improvement of the existing DOLPHIN approach.

1It should be noted that DOLPHIN operates in a lower-dimensional fea-

ture space for efficiency reasons. However, our investigations do not indicate

any significant performance difference for DOLPHIN when using Mel fea-

tures instead of an uncompressed linear frequency transform.
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3.2.1. Soft Mask Estimation by DNN-SME

Let xt denote the vector representation of all M log-Mel co-

efficients of the noisy observation at time t, i.e.,

xt =
[
Xt,1 Xt,2 . . . Xt,M

]
, (1)

and defining further the vector representation of the masked

version of Xt,m

x̃t =
[
X̃t,1 X̃t,2 . . . X̃t,M

]
, (2)

where,

X̃t,m = Xt,m + log
(
M̂0

t,m

)
, (3)

the extended feature that makes use of spectral and spatial

information can then be conveniently defined as

¯̄xt = xt || x̃t, (4)

where || denotes vector concatenation. Here, x̃t can be in-

terpreted as an auxiliary feature, whose effect has been con-

firmed in e.g., [15, 18]. Furthermore, it is worth to note that

using the masked version of Xt,m is equivalent to using M̂0
t,m

directly, but we have found that the DNN training is more sta-

ble when using the above approach. Using Eq. (4), the input

layer of the DNN reads

z
IN =

[
¯̄xt−W · · · ¯̄xt · · · ¯̄xt+W

]
, (5)

with W being the context window length. The hidden layers

are defined by

hl(z) = σ
(
Wlh(l−1)(z

IN) + bl

)
, (6)

with l denoting the layer index and h0 is the identity function.

σ(·) represents the Sigmoid function and W and b are the

weight matrix and the bias vector. The output layer reads

z
OUT = σ

(
WLh(L−1)(z

IN) + bL

)
, (7)

which represents the Mel frequencies of the desired soft mask

estimate M̂ at time t.

3.2.2. Parameter Estimation

For training the DNN we use the minimum mean square er-

ror criterion (MMSE) where the loss function is given by the

difference of the values of the output layer and the values of

a precomputed ideal binary mask (IBM), i.e.,

E
MMSE =

∑

t

∑

m

(
M̂t,m − M̃t,m

)2

. (8)

The IBM is computed by comparing the power of the

clean speech St,m with the power of the isolated background

noise Nt,m for each time frame t and each Mel frequency

band m

M̃t,m =

{
1− ǫ, if St,m ≥ Nt,m,

ǫ, otherwise,
(9)
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Fig. 2: Comparison of spectral masks.

where ǫ represents a scalar positive constant that allows to

adjust the mask suppression level and we set ǫ = 0.01. The

parameters of the DNN are then estimated by means of the

well-known backpropagation algorithm using the gradient of

Eq. (8). Figure 2 shows an example of the IBM (a) and the

soft mask estimated by DNN-SME (b).

4. EVALUATION

The proposed approach is evaluated in terms of the ASR per-

formance achieved on the challenge data of the 3rd CHiME

Speech Separation and Recognition Challenge [4].

4.1. CHiME-3 Corpus Description

The CHiME-3 corpus comprises real speech recordings that

were created by using a 6-channel microphone array attached

to a tablet device. The recordings were obtained within four

different noisy everyday environments, i.e., public transport

(BUS), cafe (CAF), pedestrian area (PED), and street junction

(STR), and they feature several male and female speakers, ut-

tering the Wall Street Journal (WSJ) [19] sentences.

The corpus consists of real and simulated data, abbrevi-

ated as real and simu in the ensuing discussion, where the

latter has been generated by artificially mixing the clean WSJ

utterances with the environmental noise recordings.

The corpus is divided into 3 individual subsets, i.e.,

a training set (tr s), containing 8738 noisy utterances

(1600 real + 7138 simu), a development set (dt 05), con-

taining 3280 noisy utterances (1640 real + 1640 simu),

and an evaluation set (et 05), containing 2640 noisy utter-

ances (1320 real + 1320 simu). Each of these subsets

contains the same number of utterances for each individual

environment (BUS, CAF, PED, and STR).
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Table 1: Word error rates in percent for the Noisy signal, for DOLPHIN using a conventional generative SME (GSME), for

DOLPHIN using the proposed discriminative SME (DSME), and for DOLPHIN using ideal binary masks (IBM). The results

are shown for the development set (dt 05) and the evaluation set (et 05).

simu real

Type Set BUS CAF PED STR Av. BUS CAF PED STR Av. Av. (all)

Noisy
d
t
0
5

8.48 10.56 6.42 7.51 8.24 14.00 7.94 6.03 8.05 9.01 8.62

IBM 5.18 6.19 3.97 5.29 5.16 - - - - - 5.16

GSME 8.48 9.57 6.53 7.88 8.12 12.13 8.79 6.15 8.02 8.77 8.44

DSME 7.99 7.74 5.90 7.27 7.23 11.05 6.37 5.49 6.83 7.44 7.33

Noisy

e
t
0
5

8.37 11.69 9.86 10.78 10.17 22.55 16.21 12.89 10.74 15.60 12.89

IBM 5.38 7.15 7.00 7.49 6.76 - - - - - 6.76

GSME 7.83 9.69 12.50 14.18 11.05 16.21 13.45 13.45 11.64 13.69 12.37

DSME 6.65 8.93 11.69 12.18 9.86 15.31 11.36 11.83 10.59 12.27 11.07

4.2. Speech Recognition Backend

The speech recognizer that is used to evaluate the proposed

approach is based on a multi-condition DNN-AM and a re-

current neural network (RNN) language model in addition to

a trigram language model. A detailed description of the sys-

tem is given as that for the 1-pass SI system in [20].

4.3. Experimental Setup

All spectral input quantities, i.e., the noisy observation X and

the initial mask M̂0, are computed by using a 40-dimensional

Mel filterbank, where we utilize a frame length of 25 ms and a

frame shift of 6.25 ms during signal analysis. For the single-

channel noisy input signal x(c′) we use c′ = 5. The initial

mask M̂0 is estimated by using a complex GMM based clus-

tering approach [20].

The DNN-SME uses a context window size of W = 5,

which results in an overall number of 880 units (11 frames ×
40 log-Mel coefficients × 2 feature types) of the input layer

for the given filterbank dimension. We train the DNN-SME

by using the simu data of the tr s set, where the simu data

of the dt 05 set is used for cross-validation. As we found

that there is no performance improvement for more than one

hidden layer (i.e., setting L > 2), we present our results for

L = 1. The number of units in the hidden layer is set to 1024,

and the output layer consists of 40 dimensions, which is the

number of Mel frequencies of the soft mask.

5. RESULTS

The speech recognition performance is measured in terms of

the word error rate (WER).

Table 1 shows the results for the case of no additional sig-

nal enhancement (Noisy) as well as for the case when DOL-

PHIN makes use of the IBM, i.e., when no model for mask

estimation is used2. The results for DOLPHIN using the con-

ventional generative soft mask estimation are indicated by

GSME and the proposed generative-discriminative hybrid ap-

proach using the DNN-SME is shown in the last row (DSME).

The conventional DOLPHIN approach (GSME) reduces

the word error rate for most of the environments, where

the relative average word error rate reduction is 2 % for

dt 05 and 4 % for et 05, when comparing the results to

the noisy case. The effectiveness of the DOLPHIN approach

for ASR can be seen when DOLPHIN makes use of IBMs,

as the relative average word error rate reduction is more than

40 % for both data sets.

For the proposed discriminative SME (DSME), the per-

formance of DOLPHIN improves as compared to GSME for

each presented case. The relative average word error rate re-

duction is 15 % and 14 % for dt 05 and et 05, respectively,

when comparing DSME with Noisy.

6. CONCLUSIONS

In this work we have shown that a generative-discriminative

hybrid approach that incorporates a DNN-SME into DOL-

PHIN, is beneficial for a multi-condition noise reduction task.

Comparing the performance with the conventional approach,

which is solely based on generative models, the proposed ap-

proach yields a relative word error rate reduction of 15 % on

the CHiME-3 challenge dataset.

It was shown that dereverberation and beamforming are

also effective to reduce the WER for CHiME-3 [20], and thus

the future work will cover the impact of the combination of

these methods with DOLPHIN-DNN.

2The IBM can only be computed for the simu data using the provided

annotation files that contain the information about the temporal placement of

the WSJ utterances in the background noise recordings.
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