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ABSTRACT
We present an algorithm using convolutive non-negative matrix
factorization (CNMF) to create noise-robust features for automatic
speech recognition (ASR). Typically in noise-robust ASR, CNMF is
used to remove noise from noisy speech prior to feature extraction.
However, we find that denoising introduces distortion and artifacts,
which can degrade ASR performance. Instead, we propose using the
time-activation matrices from CNMF as acoustic model features. In
this paper, we describe how to create speech and noise dictionar-
ies that generate noise-robust time-activation matrices from noisy
speech. Using the time-activation matrices created by our proposed
algorithm, we achieve a 11.8% relative improvement in the word er-
ror rate on the Aurora 4 corpus compared to using log-mel filterbank
energies. Furthermore, we attain a 13.8% relative improvement over
log-mel filterbank energies when we combine them with our pro-
posed features, indicating that our features contain complementary
information to log-mel features.

Index Terms— acoustic features, dictionary learning, feature
extraction, non-negative matrix factorization, robust speech recogni-
tion

1. INTRODUCTION
Automatic speech recognition (ASR) is increasingly being used as
the primary interface between humans and devices. Speech offers
a natural and efficient way to communicate with devices. Further-
more, rich information contained in speech, such as emotion [1] and
cognitive load [2], can help devices interact or respond appropri-
ately to users. Unfortunately, ASR systems perform poorly in noisy
environments. Generally, features extracted from noisy speech con-
tain distortion and artifacts. Researchers have proposed several ap-
proaches to reduce the distortion and artifacts, including speech de-
noising [3], feature enhancement [4], feature transformation [5], and
acoustic model adaptation [6, 7]. Multi-condition training has also
been found to reduce word error rates on noisy speech [8]. The goal
in all of these approaches is to reduce the mismatch between the
features extracted from clean and noisy speech.

Speech denoising is a commonly-used pre-processing step. Pop-
ular methods for speech denoising include Wiener filtering and spec-
tral subtraction methods [9]. These methods assume the power spec-
tra of speech and noise are additive, and an estimate of the noise
power spectra can be subtracted from the noisy power spectra at the
frame level. Another denoising technique assuming additive compo-
nents is non-negative matrix factorization (NMF) [10, 11]. In NMF,
each frame of noisy speech is decomposed into components from a
speech dictionary and a noise dictionary, and the underlying speech
is recovered by keeping the components corresponding to the speech
dictionary. Speech denoising, however, can introduce distortion and
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artifacts, such as musical noise, and has been shown to degrade
ASR performance [8, 12]. Moreover, these algorithms operate at
each frame independently, and so they can introduce discontinuities
across frames. These discontinuities can manifest as noise in the fea-
tures, thus contributing to feature mismatch between clean and noisy
speech.

Another way to reduce feature mismatch is to extract features
that are more robust to noise. Moreno et al. introduced Vector Taylor
Series (VTS) features [13], which uses the Taylor series expansion
of the noisy signal to model the effect of noise and channel charac-
teristics on the speech statistics. Deng et al. proposed the Stereo-
based Piecewise Linear Compensation for Environments (SPLICE)
algorithm [14] for generating noise-robust features for datasets that
have clean versions of the noisy data (stereo datasets). They as-
sume that each cepstral vector from the noisy speech comes from
a mixture of Gaussians, and that the clean speech cepstral vector
has a piece-wise linear relationship to the noisy speech cepstral vec-
tor. Power-Normalized Cepstral Coefficients (PNCC), recently pro-
posed by Kim and Stern [15], were shown to reduce word error
rates on noisy speech compared to Mel-Frequency Cepstral Coef-
ficients (MFCC) and Relative Spectral Perceptual Linear Prediction
(RASTA-PLP) coefficients. Inspired by human auditory processing,
the processing steps for creating PNCCs include a power-law non-
linearity, a denoising algorithm, and temporal masking.

We propose an algorithm for creating noise-robust acoustic
features using convolutive NMF (CNMF) [16] without assuming
any distribution on the noisy speech. CNMF creates a dictionary
that contains spectro-temporal building blocks of a signal and gen-
erates a time-activation matrix that describes how to additively
combine those building blocks to form the original signal. The time-
activation matrix encodes the occurrence and magnitude of each
spectro-temporal building block within the speech. Thus, the time-
activation matrix can be discriminative of the different phonemes
at the frame level when the dictionary remains fixed. In this paper,
we will describe how to build dictionaries for speech and noise such
that the time-activation matrices are robust to noise.

This paper is organized as follows. Section 2 describes the pro-
cess we used to create acoustic features that are more invariant to
acoustic noise. Section 3 discusses the ASR experiment and com-
pares the word error rate with baseline log-mel features extracted
from noisy and denoised speech. Section 4 gives insights into the
results of our experiments and points out some of the limitations in
our work. Finally, Section 5 offers our conclusions and directions
for future work.

2. ALGORITHM FOR CREATING NOISE-ROBUST
ACOUSTIC FEATURES

Log-mel filterbank energies are commonly used as a feature for
acoustic modeling. First, the mel filterbank energies are calcu-
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lated by taking a D × n spectrogram X and multiplying it by a
d × D matrix A that contains the mel filterbank in its rows. The
resulting d × n matrix Y = AX contains a representation of
the signal in the mel frequency domain, and log(Y ) is given as
input to the acoustic model. The mel filterbank smooths out ad-
jacent frequency bins, so it can mitigate the influence of noise in
the mel frequency if the noise occurs in isolated frequency bands.
Nonetheless, if some additive noise E perturbs the input, then
Ynoisy = AXnoisy = A(X + E) = Y + AE. This results in feature
mismatch between clean and noisy speech.

We propose to use the time-activation matrices from CNMF as
features for the acoustic model. Crucially, we describe an algorithm
that reduces the effect of noise on the resulting time-activation ma-
trices. The following sections describe the steps of the algorithm,
and Figure 1 summarizes the algorithm in a flowchart.

2.1. Step 1: Learn a speech dictionary
Speech contains certain spectro-temporal properties that help distin-
guish it from background noise. CNMF is an algorithm that dis-
covers the spectro-temporal building blocks of speech and stores
the building blocks in a time-varying dictionary. CNMF decom-
poses a spectrogram V ∈ Rm×n

+ into a time-varying dictionary
W ∈ Rm×K×T

+ and time-activation matrix H ∈ RK×n
+ by mini-

mizing the divergence between V and V̂ :=
∑T−1

t=0 W (t)
t→
H . W (t)

refers to the dictionary at time t (the third dimension of W ) and
t→
H

means that the columns of H are shifted t columns to the right and t
all-zero columns are filled in on the left. In this work, we minimize
the generalized KL divergence between V and V̂ :

(1)D
(
V ‖V̂

)
=

m∑
i=1

n∑
j=1

Vij ln

(
Vij

V̂ij

)
− Vij + V̂ij

To learn a speech dictionary, we concatenate the clean speech
from a stereo dataset into one long utterance and create the spec-
trogram Vclean from this utterance. We use CNMF to decompose
Vclean into a spectro-temporal speech dictionary Wspeech and time-
activation matrixHclean. Researchers have shown that imposing spar-
sity on the time-activation matrix improves the quality of the dictio-
nary [17, 18]. Thus, we augment the generalized KL divergence with
an L1 penalty on the time-activation matrix to encourage sparsity:

(2)Cspeech = D
(
Vclean‖V̂clean

)
+ λ

K∑
k=1

n∑
j=1

Hclean
kj ,

where V̂clean :=
∑T−1

t=0 Wspeech(t)
t→
H clean and λ controls the level of

sparsity ofH . To minimize Equation 2, we iteratively updateWspeech

and Hclean with the following multiplicative updates:

Wspeech(t)←Wspeech(t)⊗
Vclean
V̂clean

t→
Hᵀ

clean

1m×n

t→
Hᵀclean

, ∀t ∈ {0, . . . , T − 1}

(3a)

Hclean ← Hclean ⊗

∑T−1
t=0 W ᵀ

speech(t)

←t[
Vclean
V̂clean

]
∑T−1

t=0

(
W ᵀ

speech(t)1m×n

)
+ λ

, (3b)

where ⊗ means element-wise multiplication and the division is
element-wise.

2.2. Step 2: Learn a noise dictionary
We also use CNMF to learn the spectro-temporal properties of noise.
Importantly, we want the noise dictionary to capture as much of the
perturbations due to noise so that the time-activation matrix is un-
affected by noise. That is, suppose we have clean speech Vclean that
decomposes into Wspeech and Hclean, and we have the corresponding
speech corrupted by noise Vnoisy. Then, we would like to find a noise
dictionary Wnoise such that the CNMF decomposition of Vnoisy also
yields the time-activation matrix Hclean.

To achieve this goal, we minimize the following cost function:

(4)Cnoisy = D
(
Vnoisy‖V̂noisy

)
+ λ

K∑
k=1

n∑
j=1

Hclean
kj ,

where V̂noisy :=
∑T−1

t=0 (Wspeech(t) +Wnoise(t))
t→
H clean. The idea

behind this cost function is to try to push the variability due to noise
into Wnoise. This formulation is similar to total variability model-
ing [19], where Wspeech represents the universal background model
(UBM) and Wnoise represents the shift in the UBM due to some
source of variability (in this case, noise).

To learn a noise dictionary, we pair the clean and noisy utter-
ances in the stereo dataset. We concatenate the clean utterances and
the noisy utterances and create spectrograms from these concate-
nated utterances Vclean and Vnoisy. With Vclean and Wspeech fixed, we
run Equation 3b to get Hclean. Then, with Vnoisy, Wspeech, and Hclean

fixed, we obtain the spectro-temporal noise dictionary Wnoise by us-
ing the following update rule that minimizes Equation 4:

Wnoise(t)←Wnoise(t)⊗
Vnoisy

V̂noisy

t→
Hᵀ

clean

1m×n

t→
Hᵀclean

, ∀t ∈ {0, . . . , T − 1} (5)

2.3. Step 3: Learn a time-varying projection
Once we have the speech and noise dictionaries in hand, we can
generate time-activation matrices for the entire dataset. However,
note that the CNMF cost function minimizes the signal reconstruc-
tion error; that is, it will find the time-activation matrix Hutt for each
utterance Vutt that minimizes the KL divergence between Vutt and∑T−1

t=0 (Wspeech(t) +Wnoise(t))
t→
H utt. This cost function is appropri-

ate when you want the reconstructed signal (eg. denoised speech).
What is important when using the time-activation matrices as fea-
tures is the reduction in mismatch between the matrices from clean
and noisy speech, which is not guaranteed by the CNMF cost func-
tion.

To reduce feature mismatch, we find a time-varying projection
matrix P ∈ RK×m×T

+ that denoises the time-activation matrices
from noisy speech by projecting them onto the space containing the
time-activation matrices from clean speech. The cost function that
achieves this is

(6)Cproj = D
(
Hclean‖Ĥdenoised

)
+D

(
Ĥclean‖Ĥdenoised

)
,

where Ĥclean :=
∑T−1

t=0 P (t)
t→

V̂ clean, Ĥdenoised :=
∑T−1

t=0 P (t)
t→

V̂ denoised,

and V̂denoised :=
∑T−1

t=0 Wspeech(t)
t→
H noisy. The first part of the cost

function minimizes the divergence between the denoised and target
clean time-activation matrices. The second part of the cost function
ensures that P projects time-activation matrices from clean and
noisy speech in the same way. The second part is useful during fea-
ture extraction (Step 4) where it is unknown whether the utterance
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Fig. 1: Flowchart illustrating the algorithm for generating noise-robust time-activation matrices.

is clean or noisy. Equation 6 can be minimized with the following
multiplicative update:

(7)P (t)← P (t)⊗
1

t→

V̂ ᵀ
clean +

Hclean+Ĥclean
Ĥdenoised

t→

V̂ ᵀ
denoised(

1+ ln
(

Ĥclean
Ĥdenoised

)) t→

V̂ ᵀclean + 2
t→

V̂ ᵀdenoised

,

∀t ∈ {0, . . . , T − 1}

To learn the time-varying projection, we pair the clean and noisy
utterances. For the clean utterances, we run CNMF with Wspeech

fixed to get Hclean. For the noisy utterances, we run CNMF with
Wspeech andWnoise fixed to getHnoisy. We then learn the time-varying
projection with Equation 7.

2.4. Step 4: Extract acoustic features
Once we have learned the time-varying projection, we are ready to
generate time-activation matrices for the entire dataset as features
for the acoustic model. For each utterance Vutt in the corpus, we find
the time-activation matrix Hutt with Wspeech and Wnoise fixed using
the following update rule:

Hutt ← Hutt⊗

∑T−1
t=0 (Wspeech(t) +Wnoise(t))

ᵀ
←t[
Vutt
V̂utt

]
∑T−1

t=0 ((Wspeech(t) +Wnoise(t))
ᵀ 1m×n) + λ

, (8)

where V̂utt :=
∑T−1

t=0 (Wspeech(t) +Wnoise(t))
t→
H utt. Then, we

use the time-varying projection P to calculate the denoised time-

activation matrixHdenoised =
∑T−1

t=0 P (t)
t→

V̂ denoised, where V̂denoised :=∑T−1
t=0 Wspeech(t)

t→
H utt. We input log(Hdenoised) as features into the

acoustic model.

3. ASR EXPERIMENT

We investigated the performance of the proposed algorithm on the
Aurora 4 corpus [20]. The training set consists of 7137 multi-
condition sentences from the Wall Street Journal database. The
noisy utterances are corrupted with one of six different noise types
(airport, babble, car, restaurant, street traffic, and train station) at
10–20 dB SNR. The standard Aurora 4 test set consists of 330 base
utterances from 8 speakers, with each of the utterances corrupted by
the same six noises with SNRs ranging from 5–15 dB. The test set
is divided into four categories:

• A: clean speech with near-field microphone.

• B: average of all noise conditions with near-field microphone.

• C: clean speech with far-field microphone.

• D: average of all noise conditions with far-field microphone.

The acoustic model for the ASR is a 7-layer fully-connected
deep neural network (DNN) with 1024 neurons per hidden layer and
2000 neurons in the output layer. We use the rectified linear units
(ReLU) activation function and a fixed dropout rate of 50% for layers
4 and 5. The training is based on the cross-entropy criterion, using
stochastic gradient descent (SGD) and a mini-batch size of 256. We
apply speaker-independent global mean and variance normalization
to the features prior to augmenting them with delta and delta-delta,
followed by splicing of 5 frames to the left and right for context. We
used the task-standard WSJ0 bigram language model. The Aurora 4
test set is decoded using the IBM Attila dynamic decoder [21].

We ran two baseline experiments: extracting 40-dimensional
log-mel features from the unprocessed speech and extracting 40-
dimensional log-mel features from speech denoised by CNMF. To
obtain denoised speech, we calculated the denoised spectrogram

Vdenoised =
V̂speech

V̂speech + V̂noise
⊗ Vutt (9)

for each utterance Vutt, with V̂speech =
∑T−1

t=0 Wspeech(t)
t→
H utt and

V̂noise =
∑T−1

t=0 Wnoise(t)
t→
H utt. We converted the denoised spectro-

gram to the time-domain using the overlap-add method [22].
Next, we generated time-activation matrices in three different

ways: using only a speech dictionary, using a speech and noise dic-
tionary and keeping the rows of the activation matrix corresponding
to the speech dictionary, and using the algorithm described in the
previous section. We used K = 60, T = 5, and λ = 2 to gen-
erate these matrices. Furthermore, we appended the time-activation
matrices generated using the proposed method to log-mel features.
Table 1 shows the word error rates (WER) for all the experiments.

4. DISCUSSION

Table 1 shows that log-mel features extracted from denoised speech
performed worse than log-mel features extracted from unprocessed
speech. As mentioned previously, denoising is a common step taken
by researchers when performing ASR on noisy speech. Our results
indicate, in the context of multi-condition training, that it is better not
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Table 1: Word error rates for different acoustic model features in
different noise and channel conditions.

Feature A B C D Average
Log-mel,
unprocessed speech 4.82 8.32 8.03 16.35 12.34
Log-mel,
denoised speech 5.29 9.67 9.19 19.36 14.52
Time-activations,
speech dictionary 5.06 8.35 10.50 18.69 13.53
Time-activations,
speech+noise dict. 5.01 8.29 10.42 18.27 13.29
Time-activations,
proposed algorithm 4.43 7.34 7.86 16.29 11.82
Log-mel +
time-activations 4.22 7.17 7.70 15.56 11.37

to denoise the speech. Denoising most likely increases the WER be-
cause it introduces distortions and artifacts in the signal. Since most
features, including log-mel features, are calculated directly from the
signal, the features capture the artifacts, thus increasing the mis-
match between features from clean and noisy speech. Moreover,
the distortions and artifacts can vary by noise and SNR level. These
introduce additional sources of variability in the log-mel features.

The results show that using the time-activation matrices directly
as features outperforms using them as a denoising pre-processing
step. Unfortunately, calculating the time-activation matrices with
only a speech dictionary performs below log-mel features on unpro-
cessed speech. Since the speech dictionary is fixed when generating
features, a poorer performance is expected because the variability
due to noise had to be captured by the time-activation matrix, mak-
ing it susceptible to noise. Adding the noise dictionary gave slight
improvements because it was able to capture some of the variability
due to noise. However, the noise dictionary did not adapt to different
noises during feature extraction, reducing its efficacy in capturing
the noise variability. On the other hand, generating time-activation
matrices with the proposed algorithm outperformed all of the previ-
ous experiments. In different noise conditions with the near-field mi-
crophone (category B), we achieved a 11.8% relative improvement
over log-mel features on unprocessed speech. This result suggests
that designing noise-robust features can improve ASR performance
on noisy speech compared to extracting standard features on unpro-
cessed or denoised speech.

Finally, appending the time-activation matrices to the log-mel
features gives the best-performing system. In category B, we
achieved a 13.8% relative improvement over log-mel features on
unprocessed speech. The improvement in performance over using
just the time-activation matrices indicates that the time-activation
matrices contain complementary information to log-mel features.
The log-mel features are a low-dimensional projection of the spec-
trogram, and so they contain spectral information. On the other
hand, the time-activation matrix is an encoding of the spectrogram
relative to the speech dictionary. Thus, the time-activation matrix
doesn’t contain spectral information, but rather shows the magni-
tude of different spectro-temporal speech patterns at each frame.
For visualization, Figure 2 compares the log-mel features and time-
activation matrices extracted for an Aurora 4 utterance in clean and
babble noise. Notice that the time-activation matrix for babble noise
is more closely matched to the matrix for clean speech than the
log-mel features for babble noise are to clean log-mel features.

A limitation of our algorithm is the need for clean versions of
noisy speech in the corpus (stereo dataset). We used the clean speech

(a) Log-mel, clean (b) Log-mel, babble

(c) Time-activations, clean (d) Time-activations, babble

Fig. 2: Comparison of log-mel features and time-activation matrices
for an Aurora 4 utterance.

when learning the dictionaries and time-varying projection. This
limits our approach to datasets with clean speech. One approach
around this constraint is to learn the dictionaries and projection on
a different stereo dataset, and then apply the dictionaries and pro-
jection when extracting features on a non-stereo dataset. Another
workaround is to use a voice activity detector (VAD) to learn the
speech dictionary only from frames that have a high confidence of
containing speech. Additionally, the frames marked as non-speech
can be used to adapt the noise dictionary during the feature extrac-
tion step. Extending on the VAD idea, we can obtain a measure of
speech confidence at the frame and frequency levels directly from
CNMF using V̂speech

/(
V̂speech + V̂noise

)
. This matrix contains val-

ues between 0 and 1 that indicate the proportion of the signal energy
belonging to speech. We can modify the cost function for learning
the speech dictionary to place greater weight on regions with high
speech proportion. Similarly, we can bias the noise dictionary learn-
ing to favor regions with low speech proportion.

5. CONCLUSION

We proposed an algorithm to generate noise-robust time-activation
matrices using CNMF, and we used these as features for the acous-
tic model. The algorithm centered upon forcing the variability due
to noise out of the time-activation matrices and into the dictionaries.
ASR results on the Aurora 4 dataset indicate a 11.8% relative im-
provement of the WER over log-mel features. Furthermore, combin-
ing the time-activation matrices with log-mel features gives a 13.8%
relative improvement of the WER over log-mel features. Our exper-
iments show that our algorithm for creating time-activation matrices
is more robust to noise and contains complementary information to
log-mel features.

To build upon this work, we will explore ways to generate noise-
robust time-activation matrices without access to clean speech, as
mentioned in the previous section. We will explore ways to adapt
the noise dictionary during feature extraction to increase its useful-
ness. We will also train the dictionaries discriminatively, instead of
unsupervised as it is currently. We will investigate other approaches
to generating noise-robust time-activation matrices, such as joint-
adaptive training [23]. Finally, we will incorporate channel compen-
sation into our algorithm.
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