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ABSTRACT

Convolutional Neural Networks (CNNs) are superior to fully con-
nected neural networks in various speech recognition tasks and the
advantage is pronounced in noisy environments. In recent years,
many techniques have been proposed in the computer vision com-
munity to improve CNN’s classification performance. This paper
considers two approaches recently developed for image classifica-
tion and examines their impacts on noisy speech recognition perfor-
mance. The first approach is to increase the depth of convolution
layers. Different approaches to deepening the CNNs are compared.
In particular, the usefulness of learning dynamic features with small
convolution layers that perform convolution in time is shown along
with a modulation frequency analysis of the learned convolution fil-
ters. The second approach is to use trainable activation functions.
Specifically, the use of a Parametric Rectified Linear Unit (PReLU)
is investigated. Experimental results show that both approaches yield
significant improvements in performance. Combining the two ap-
proaches further reduces recognition errors, producing a word error
rate of 11.1% in the Aurora4 task, the best published result for this
corpus, with a standard one-pass bi-gram decoding set-up.

Index Terms— Automatic speech recognition, noise robust-
ness, convolutional neural network, parametric rectified linear unit

1. INTRODUCTION

There are three basic neural network architectures that have been
used for acoustic modelling: fully connected networks, Convo-
lutional Neural Networks (CNNs), and recurrent neural networks
including long short-term memory networks. This paper is con-
cerned with acoustic modelling based on CNNs [1, 2]. CNNs are
known to be effective especially when speech features are corrupted
by noise [3].

A great improvement image classification performance was
achieved last year thanks to advances in CNN structure design. One
successful approach that has been proven to be useful by a number
of studies is to increase the number of convolution layers. The first
and second best systems in the ImageNet Large-Scale Visual Recog-
nition Challenge 2014 employed very deep CNNs consisting of 21
and 16 convolution layers, respectively [4, 5]. Another approach
that has shown promise for image classification is to use improved
versions of Rectified Linear Units (ReLUs) [6]. The first system that
yielded a super-human performance in the ImageNet classification
task made use of a very deep CNN with trainable ReLUs called
Parametric ReLUs (PReLUs) [7].

This paper evaluates the effectiveness of these approaches in the
Aurora4 noisy speech recognition task. After highlighting similari-
ties and differences between the present work and previous studies
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in Section 2, Section 3 describes the framework in which we conduct
investigations. Section 4 elaborates on the approaches examined in
this paper, and Section 5 presents our experimental results. Section
6 concludes this paper.

2. RELEVANTWORK

We started the present work by extending our previous study on the
application of “Network in Network” to speech recognition [8], how-
ever two relevant studies [9, 10] were published at Interspeech 2015
just before our planned submission of the paper. While conventional
CNNs used in speech recognition systems had contained only one
or two convolution layers, the work described in [9] employed deep
CNNs with up to 10 convolution layers. Our work differs from [9]
in two ways. Firstly, we compare different approaches to increasing
the depth of a CNN without changing other network configurations.
Secondly, we propose replacing the delta (and double-delta) features
with dynamic features learned with small convolution layers that per-
form convolution in time.

The work published in [10] applied the PReLU activation func-
tion to the Aurora4 task. (Another Interspeech2015 paper [11] used
the PReLU with fully connected networks.) However, the CNN used
in the paper was small, consisting of two convolution layers with
only 40 channels. Probably because of this limited configuration, the
PReLU was reported to be only marginally effective, outperforming
the conventional ReLU by 1.34% relative. This could possibly be
an underestimation of the merit of this activation function. In our
experiments using the same task, the PReLUs yielded much larger
gains.

Finally, another noteworthy difference between our work and
those previous studies is that we explore the combined effect of
the two approaches that were separately tested in the previous pa-
pers. The use of a deep PReLU CNN with seven convolution layers
yielded the best reported result in Aurora4, namely a word error rate
(WER) of 11.1%, with a standard one-pass bi-gram decoding set-
up. This also surpasses the results of multi-pass recognition systems
using adapted fully connected networks [12, 13].

3. EVALUATION FRAMEWORK
3.1. Aurora4
This work used the Aurora4 corpus with the multi-condition train-
ing set-up. The corpus was derived from the Wall Street Journal
5K-word closed vocabulary dictation task (WSJ0). The training set
consists of 7138 utterances spoken by 83 speakers. Half of them
were recorded with a close talking microphone while the other half
used a desk mounted secondary microphone. Each part was further
divided into seven subsets. One of them was left unprocessed while
different types of noise were added to each of the remaining subsets
with 10 to 20 dB SNRs.
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There are 14 test sets, each representing different environmental
conditions, and they are grouped into four categories. Each test set
contains 330 utterances from eight speakers. As with the training set,
seven of the 14 test sets were recorded with a close talking micro-
phone while the remaining test sets used a secondary microphone.
Different types of noise were added to six close talking and six sec-
ondary microphone test sets with SNRs ranging from 5 to 15 dB to
produce the following 14 test sets: one clean test set (Set A); seven
test sets containing additive noise (Set B); one test set with channel
noise (Set C); and seven test sets containing both types of noise (Set
D). WERs are usually reported for each environment category.

3.2. Acoustic modelling using convolutional neural networks
With CNN-based acoustic modelling, a CNN is utilised to pre-
dict context-dependent Hidden Markov Model (HMM) states from
acoustic features spliced within a context window [1]. When we
denote the set of t-th frame features as Xt, the CNN estimates the
posterior probability, p(s|Xt), of HMM state s dominating the t-th
time frame. The state likelihood needed for Viterbi decoding is
then calculated as p(Xt |s) ∝ p(s|Xt)/p(s), where the prior probabil-
ity, p(s), is computed by counting the occurrences of state s in the
training data.

A CNN consists of convolution and pooling layers that are in-
terleaved with each other. Each convolution layer has multiple input
and output channels, where each channel conveys a two-dimensional
feature map from layer to layer. The convolution layer first applies a
set of linear filters over the feature maps produced by the preceding
layer and then feeds the individual convolution outputs into a non-
linear activation function to generate a new set of feature maps. The
pooling layer performs sub-sampling in each channel by taking the
maximum value from each non-overlapping rectangular sub-region
of the feature map. This provides the network with a level of trans-
lational invariance [14]. Several fully connected layers are usually
stacked on top of the convolution layers.

Previous work on CNN-based acoustic modelling has used
CNNs with only one or a few convolution layers [1–3,15]. The only
exception is [9] as mentioned in Section 2.

3.3. Baseline system
Our baseline system was built by following a standard recipe [16]. A
maximum-likelihood Gaussian Mixture Model (GMM) system was
constructed by using 39 cepstral features, consisting of 13 PLP coef-
ficients and their delta and delta-delta coefficients. The features were
mean-normalised at an utterance level. The GMM system, compris-
ing 3042 context-dependent states each with 16 Gaussians, was used
to create frame-level state labels. Then, a CNN was trained to pre-
dict these state labels from 1320-dimensional input vectors that were
obtained by splicing 40 mean-normalised log-mel features plus delta
and delta-delta features within an 11-frame context window. These
features were arranged to form three (i.e., static, delta, and double-
delta) 40×11 time-frequency feature maps. Our baseline CNN com-
prised three convolution layers and two pooling layers, followed by
three fully connected layers and a soft-max layer as illustrated by the
A3 network in Fig. 1. This structure was taken from our previous
work on the CHiME-3 corpus [8]. Each convolution and pooling
layer had 180 output channels. It should be noted that, following
previous studies [1, 3, 15], the initial convolution layer entirely cov-
ered the context window size. The CNN parameters were optimised
from a randomly initialised network with Stochastic Gradient De-
scent (SGD) with a minibatch of 128 frames and a momentum of
0.9. Training was stopped after 20 epochs. The learning rate was
gradually decreased from an initial value of 0.01. Dropout was used

in the fully connected layers with a dropout rate of 0.5 to avoid over-
fitting [17].

Decoding was performed in one pass with the provided 5K-word
bi-gram language model. The baseline system yielded a WER of
13.2% as shown in the first row of Table 1 (a), which is comparable
to previously reported results [3].

4. APPROACHES EXAMINED

We examine three approaches for improving CNN acoustic models:
increasing the depth in convolution, dynamic feature learning, and
the use of PReLUs, which are described in Sections 4.1, 4.2, and
4.3, respectively.

4.1. Increasing the depth in convolution
We consider replacing each of the first and second convolution layers
of the baseline CNN described above with two convolution layers.
Different approaches may be used to achieve this.

First, we need to take account of the fact that the maximum num-
ber of convolution layers that can be stacked is determined by the
choice of receptive window size. This is because a convolution op-
eration reduces the feature map size if padding is not performed prior
to convolution. An x× y convolution operation over a p× q feature
map results in a (p− x+1)× (q−y+1) feature map.

We consider three options for deepening the CNN. The first is to
use the “Network in Network” (NiN) architecture [18]. With the NiN
approach, each convolution layer is followed by one or a few 1×1
convolution layers as illustrated by the A5P network in Fig. 1. This
increases the nonlinearity of the CNN without affecting the recep-
tive field of the convolution layers. The second option is to replace
a single convolution layer with multiple convolution layers with a
smaller receptive window size. Specifically, we decompose a single
5×y convolution layer into a pair of 3× y and 3×1 convolution lay-
ers as illustrated by the A5Q network in Fig. 1. A pair of the 3× y
and 3×1 convolution layers has the same effective receptive field as
a single 5× y convolution layer. The third option is to stack 5× 1
convolution layers. This requires the feature map to be padded on
the border while the above two options can be employed without
padding. This is illustrated by the A5R network in Fig. 1. These
three options are compared experimentally in Section 5.1.

4.2. Dynamic feature learning
To take further advantage of CNN’s capability of the learning lo-
cal correlation patterns inherent in input features, we explore the
possibility of learning dynamic features with convolution layers. In
conventional speech recognition systems, dynamic features, or delta
features, are computed by applying a linear regression filter to static
features. Here, we attempt to renew the conventional delta feature
scheme with convolution layers that perform convolution in time and
are integrated into a CNN acoustic model. It is worth recalling that
it is not easy for fully connected neural networks to learn delta-like
dynamic features [19].

As with the delta plus double-delta scheme, we propose adding
two convolution layers that perform convolution in time (see Fig. 2)
to the bottom of a CNN. This combined CNN is assumed to accept a
single 40×19 feature map consisting of only static features as input.
The context window 19 is chosen so that this new CNN covers the
same time span as the baseline CNN, which uses three (i.e., static,
delta, and double-delta) 40×11 feature maps.

This dynamic feature learning approach has two advantages
compared with the conventional delta feature scheme in two ways.
By letting the convolution layer have multiple output channels (15
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Fig. 1: Baseline CNN and three ways of increasing the depth. “x×y”
means a window of x frequency bands and y time frames. Best seen
in colour.
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Fig. 2: Convolution layers for learning dynamic features. The net-
work output is connected to the input of either of the CNNs in Fig. 1.
Best seen in colour.

in our experiments), it is possible to obtain multiple filters that
highlight different aspects of the input static features. The non-
linear activation units of the convolution layers may offer additional
non-linearity, which may allow the convolution layers to obtain more
effective dynamic feature representations than the conventional delta
features. The effectiveness of the proposed dynamic feature learning
approach is evaluated in Section 5.2.

4.3. Parametric ReLU
A PReLU is a variant of a conventional ReLU and its behaviour can
be optimised by training. The PReLU activation function is defined
as [7]

f (xi) =max(0, xi)+aimin(0, xi). (1)

x

xxf =)(

0)( =xf

xxf =)(

xaxf i=)(
x

Fig. 3: ReLU vs. PReLU.

Figure 3 compares the shapes of the ReLU and PReLU activation
functions. The slope coefficient, ai, is optimised for individual
convolution channels jointly with other network parameters (i.e.,
weights and biases). In fully connected layers, individual units may
have different slope coefficients. Learning the activation function
would provide a CNN with an increased level of complexity.

5. RESULTS

This section reports the results of experiments we undertook to show
the impacts of the approaches described in the previous section on
the performance of speech recognition systems in noisy environ-
ments.

5.1. Impacts of deeper CNNs and PReLUs
Table 1 shows the WERs we obtained with different CNN configu-
rations for both (a) ReLU and (b) PReLU activation functions. Each
system is denoted by a unique ID consisting of two parts. The first
part (e.g., A3) indicates the network structure (see Fig. 1) while the
second part represents the activation function. The baseline ReLU
CNN, denoted as A3-ReLU, produced a WER of 13.2%. The fol-
lowing conclusions can be drawn.

1. All the three deeper CNNs significantly reduced the WERs
for both ReLU and PReLU. The largest relative performance
gain obtained from increasing the CNN depth was 7.6%
(A5R-ReLU vs. A3-ReLU).

2. PReLUs yielded performance gains for all the CNN config-
urations (compare Tables 1 (a) and (b)). The largest relative
gain was 9.1% (A3-PReLU vs. A3-ReLU).

3. The increased convolution depth and the use of the PReLUs
had mutually complementary effects. The A5R-PReLU sys-
tem, which has five PReLU convolution layers, outperformed
the baseline CNN by 13.6% relative.

4. The way in which the number of convolution layers was
increased had a marginal impact on the degree of perfor-
mance improvement as is clear from a comparison of the
three A5∗ systems. This implies that the enhanced degree
of non-linearity was the primary factor contributing to the
improvement.

Table 1: Effect of increasing the number of convolution layers.
(a) %WERs with ReLU activation.

System #Conv. Set Avg.Layers A B C D
A3-ReLU 3 5.3 9.0 8.8 19.4 13.2
A5P-ReLU 5 5.2 8.6 7.9 18.3 12.5
A5Q-ReLU 5 5.3 8.5 8.2 18.4 12.5
A5R-ReLU 5 5.0 8.3 7.7 18.1 12.2

(b) %WERs with PReLU activation.

System #Conv. Set Avg.Layers A B C D
A3-PReLU 3 5.1 8.0 7.9 17.8 12.0
A5P-PReLU 5 4.7 7.9 7.4 16.8 11.5
A5Q-PReLU 5 4.7 7.9 7.2 17.2 11.6
A5R-PReLU 5 4.9 7.7 7.0 17.0 11.4
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Fig. 4: Frequency responses of dynamic feature filters learned in the first convolution layer. The frequency response of a delta feature filter
is also shown. The first four filters have relatively flat responses and appear to have low pass characteristics. The next four filters also have
flat responses, but they tend to exhibit high pass characteristics. The remaining filters have strong high pass responses while they focus on
different ranges of modulation frequencies.

5.2. Results and analysis of dynamic feature learning
Table 2 (a) summarises the WERs obtained with dynamic feature
learning. Systems with IDs starting with ’B’ used 40 × 19 static
log-mel features as inputs. Numbers after the initial letters (e.g., ’5
in ’B5-ReLU’) represent the numbers of convolution layers. These
numbers take account of the two convolution layers for dynamic fea-
ture learning. For example, the B5-ReLU system consisted of the A3
network and the dynamic feature network shown in Fig. 2.

By contrasting the WERs obtained with the B5-ReLU system
with those obtained with the A3-ReLU system, we can see the use-
fulness of our dynamic feature learning method. Learning dynamic
features reduced the WER from 13.2% to 11.8%. To confirm that
this performance gain was not simply a consequence of the use of
different input features, we also experimented with a system that uses
three convolution layers and 40×19 static feature inputs (B3-ReLU).
By comparing the WERs of the B5-ReLU and B3-ReLU systems,
we can see that dynamic feature learning improved the recognition
performance by 4.1% relative. Finally, a further increase in the CNN
depth produced an additional small performance gain.

Table 2 (b) shows that the use of the PReLU activation function
further reduced recognition errors and achieved a WER of 11.1%.
The best system, denoted as B7Q-PReLU, consisted of seven convo-
lution layers, two pooling layers, three fully connected layers, and a
soft-max layer, where the initial two convolution layers were those
for dynamic feature learning. Considering that several previously
published papers conducted experiments using a tri-gram language
model [10,20], we also performed tri-gram decoding as shown in the
bottom row of Table 2 (b). The WER was 8.5%, which considerably
surpasses the previously reported results.

To analyse the characteristics of the learned dynamic feature fil-
ters, we show the frequency responses of the filters obtained in the
initial convolution layer in Fig. 4. We also show the response of the
linear regression filter for extracting delta features. We can see that
different convolution filters acquired selectivity to different modula-
tion frequencies. It is also noteworthy that several convolution filters

Table 2: Effect of dynamic feature learning.
(a) %WERs with ReLU activation.

System #Conv. Set Avg.Layers A B C D
A3-ReLU 3 5.3 9.0 8.8 19.4 13.2
B5-ReLU 5 4.7 7.9 7.6 17.5 11.8
B3-ReLU 3 4.9 8.3 8.0 18.3 12.3
B7Q-ReLU 7 4.8 7.9 7.3 17.3 11.6

(b) %WERs with PReLU activation.

System #Conv. Set Avg.Layers A B C D
B5-PReLU 5 4.8 7.8 7.5 16.7 11.4
B7Q-PReLU 7 4.5 7.6 7.0 16.5 11.1
B7Q-PReLU 7 3.0 5.3 5.3 13.2 8.5w/ tri-gram

(e.g., the one in channel #9) had similar responses to a delta feature
filter.

6. CONCLUSION

Taking account of the recent success of very deep CNNs and im-
proved activation functions in image classification tasks, we exam-
ined the individual and combined impacts of increased numbers of
convolution layers and PReLUs on noisy speech recognition perfor-
mance. Experimental results using the Aurora4 corpus showed that
both approaches yielded performance gains across different config-
urations and that their effects were complementary. To gain further
from CNN’s capability of learning local correlation patterns, a dy-
namic feature learning method that uses extra convolution layers was
also proposed. The combination of all these approaches achieved a
WER of 11.1%, which is significantly better than the baseline CNN
performance of 13.2% and previously reported results.
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