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ABSTRACT

Far-field speech recognition is an important yet challenging task due
to low signal to noise ratio. In this paper, three novel deep neural
network architectures are explored to improve the far-field speech
recognition accuracy by exploiting the parallel far-field and close-
talk recordings. All three novel architectures use multi-task learn-
ing for the model optimization but focus on three different ideas:
dereverberation and recognition joint-learning, close-talk and far-
field model knowledge sharing, and environment-code aware train-
ing. Experiments on the AMI single distant microphone (SDM) task
show that each of the proposed method can boost accuracy individ-
ually, and additional improvement can be obtained with appropriate
integration of these models. Overall we reduced the error rate by
10% relatively on the SDM set by exploiting the IHM data.

Index Terms— Far-field speech recognition, Deep neural net-
work, Multi-task learning, Feature denoising, Parallel data

1. INTRODUCTION

Despite the significant advancement made in automatic speech
recognition (ASR) after the introduction of deep neural network
(DNN) based acoustic models [1, 2, 3], the far-field speech recog-
nition remains a challenging problem [4]. In the distant talking
scenarios, the speech signal is captured by one or more microphones
located farther away from the speaker, which makes it susceptible to
distortion from reverberation and additive noise.

Many technologies [5, 6, 7] have been proposed to handle the
far-field speech recognition problem. Most of these existing methods
can be grouped into two categories: front-end based and back-end
based [8]. Front-end based approaches operate on the signal or the
feature, and attempt to remove the corrupting reverberation or noise
from the observations prior to recognition [7, 9]. Back-end based
methods leave the observations unchanged and instead update the
model parameters to match the corrupted speech in distant scenarios
[6, 10].

The performance on far-field speech recognition degrades sig-
nificantly even with DNN based acoustic models since robustness
is still a concern in the DNN-HMM systems [11]. Several methods
have been proposed in the DNN-HMM framework to improve the
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far-field speech recognition [6, 9, 10]. One type of methods learn a
DNN based feature enhancement model using the time-synchronize
parallel data, e.g., the artificially generated clean and noisy speech
pairs, or the simultaneously collected close- and distant-talking
speech pairs. An acoustic model is then built on the denoised feature
[12, 13, 14, 15].

In this work, we investigate how to exploit parallel data to
more effectively recognize far-field speech. We explore three novel
deep neural network architectures which are optimized using the
multi-task learning technique. In the dereverberation and recog-
nition joint-learning architecture, we integrate the dereverberation
and recognition into one structure. In the close-talk and far-field
model knowledge sharing architecture, we use the close-talk model
to influence the far-field model. In the environment-code aware
training architecture we utilize the environmental representation ex-
tracted from a denoiser to improve the acoustic model. We evaluate
and compare these novel architectures in detail. To our best knowl-
edge, this is the first comprehensive work on exploiting parallel data
for improving the far-field speech recognition.

The remainder of the paper is organized as follows. In Section
2 the novel architectures that exploit parallel data for the far-field
speech recognition are proposed and described. In Section 3 ex-
perimental results on the AMI single distant microphone setup are
reported and analyzed. We conclude the paper in Section 4.

2. STRATEGIES ON USING PARALLEL DATA

In this section, we propose and describe three novel DNN archi-
tectures that exploit close-talk and far-field parallel data for distant
speech recognition.

2.1. Multi-task learning

Unlike the normal DNNs which optimize just one criterion (e.g., the
cross-entropy criterion), DNNs in the multi-task learning framework
jointly optimize more than one criteria in model training. For exam-
ple, Chen et al. trained acoustic models that optimize both triphone
and trigrapheme classification accuracy [16]. Heigold et al. trained
multilingual systems that optimize for several languages simultane-
ously [17]. Chen et al. applied the multi-task learning technique to
optimize phone and speaker classification accuracy at the same time
[18]. Multi-task learning is typically used to regularize the model or
to borrow knowledge from other information sources. In this work,
multi-task learning is utilized in all proposed architectures that we
will describe next.
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2.2. Dereverberation and recognition joint-learning

The first architecture is motivated by the recent work, which used
the parallel data to train a DNN based denoising front-end [12, 13,
19]. In this work, we integrate the denoising and classification com-
ponents into one unified structure with multi-task learning. More
specifically we optimize two tasks: the dereverberation task and the
recognition task. In the dereverberation task we design a regression
model to estimate the close-talk speech given the far-field speech.
This regression model can be optimized using the time-synchronized
close-talk and far-field speech pairs by minimizing the mean squared
error (MMSE)

Emse =
∑T

t=1
||xt − xt||22 (1)

between the DNN outputs xt and the referenced close-talk features
xt at each frame t. In the recognition task we learn a discrimina-
tive model to classify senones by optimizing the cross-entropy (CE)
criterion

Ece =
∑T

t=1
Dt log(Pt), (2)

where Dt and Pt represent the target state probabilities and the es-
timated state posteriors at frame t, respectively.

Two architectures, denoted as the parallel structure and the
front-back structure, are developed and compared for the derever-
beration and recognition joint-learning as illustrated in Figure 1.
The parallel structure at left is widely used in other multi-task learn-
ing tasks [16, 17, 18], including the REVERB Challenge [6]. This
parallel structure is consisted of fully shared hidden layers at the
bottom and two task-dependent softmax layers on top.

Fig. 1. The dereverberation and recognition joint-learning frame-
work: parallel (left) and front-back (right) structures.

The front-back structure at right is inspired by the work in [15]
and extended for the far-field speech recognition task. In this struc-
ture, the front-end DNN is optimized as a dereverberation model
and the back-end DNN is learned to classify senones. Because the
FBANK features are used as the target outputs of the front-end DNN,
the back-end DNN can be concatenated on top seamlessly to form a
complete DNN structure. In contrast to the work in [15], which op-
timizes the classification DNN after the denoising DNN is trained,
our approach optimizes two components jointly with the multi-task
learning framework.

Although these two structures are different, they are both jointly
trained in the same way to optimize the interpolated CE and MMSE
criteria

E(θ) = Ece(θ) + λEmse(θ) (3)

where θ represents the whole DNN model parameter set, Ece(θ)
and Emse(θ) are the cross-entropy and mean square error objective
functions defined in equations (1) and (2), respectively, and λ is a
mixing factor to balance these two criteria.

2.3. Close-talk and far-field model knowledge sharing

As we know, the performance of the close-talk ASR system is much
better than that of the far-field system. For example, we can achieve
27% word error rate (WER) on the close-talk setup but only 56%
WER on the single distant microphone (SDM) setup in the AMI
meeting transcription task. An interesting question is whether the
far-field model can learn from the close-talk model to achieve better
recognition accuracy, similar to the work in [20] where the small-size
DNN is taught by the large-size DNN to get a better performance.

Our proposed structure that encourages knowledge sharing be-
tween close-talk and far-field models is illustrated in Figure 2. In
this novel structure a close-talk DNN and a far-field DNN are linked
together to enable knowledge sharing. The close-talk and far-field
models are trained with cross-entropy (CE) criterion. The knowl-
edge sharing is achieved by minimizing the mean square error (MSE)
between the outputs of the corresponding two hidden layers in the
two parallel models.

Fig. 2. Close-talk and far-field model knowledge sharing through
the links bridging corresponding hidden layers

The model parameters of the entire architecture are jointly
learned to optimize the interpolated objective function

E(θ) = Ece far(θ) + Ece close(θ) + λEmse(θ) (4)

where Ece far(θ) and Ece close(θ) are the cross-entropy criteria for
the far-field and close-talk DNNs respectively, Emse(θ) is the mean
square error between the hidden layer outputs of the close-talk and
far-field DNNs, and λ is the mixing factor.

After model training, the close-talk DNN and the links between
two DNNs can be discarded. Only the far-field DNN is used in the
decoding.

2.4. Environment-code aware training

In this section, we propose the environment-code aware training.
Several methods have been proposed to extract the environment or
speaker features and to use them as auxiliary information to improve
the speech recognition accuracy. Notable works include the IVec-
tor based adaptation [21], noise-aware training [22] and room-aware
training [6].

Different from these previous works, where the auxiliary infor-
mation is coded as a constant value across the whole utterance, in
our architecture the environment code is dynamically estimated us-
ing a neural network. Specifically the synchronized parallel data are
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utilized to learn an environment-related representation. In Figure
3, the neural network at left is used to extract the room-dependent
environment-code. This DNN takes the far-field feature as the in-
put and the close-talk feature as the reference target. In other words
it is trained to learn the transformation from the far-field feature to
the close-talk feature. We believe that this learned transformation
encodes some room-dependent information that is related to rever-
beration and device. We used the outputs of a bottleneck layer as the
representation of the environment-code.

This environment-code can be fed to the input layer (similar to
the augmented feature discussed in the works [6, 21, 22]), to the hid-
den layer, or to the output layer as shown in Figure 3. Different from
previous works such as [23], in our approach the environment-code
extractor and the recognition DNN are jointly learned by optimizing
the interpolated criteria

E(θ) = Ece(θ) + λEmse(θ) (5)

instead of training the environment (or speaker)-code extractor first
and then the recognition model.

Fig. 3. The environment-code aware training framework.

Note that the previous work using static auxiliary feature ([6,
21]) requires a separate process to estimate the auxiliary informa-
tion before the acoustic score calculation can be started. In our pro-
posed approach the environment-code is embedded in the acoustic
model and no extra pre-computation step is needed for the realtime
decoding.

3. EXPERIMENTS AND RESULTS

3.1. Experimental setup and baseline systems

To evaluate the proposed approaches, a series of experiments were
performed on AMI corpus, which contains around 100 hours of
meetings recorded in specifically equipped instrumented meet-
ing rooms at three sites in Europe (Edinburgh, IDIAP, TNO) [4].
Acoustic signal is captured and synchronized by multiple micro-
phones including individual head microphones (IHM, close-talk),
lapel microphones, and one or more microphone arrays. For the far-
field speech recognition in this work, the condition using the single
distant microphone (SDM, the first microphone in the primary array)
is evaluated, and the simultaneously recorded IHM (close-talk) data
are used to form the parallel data pairs. Our experiments adopted
the suggested AMI corpus partition that contains about 80 hours and
8 hours in training and evaluation sets respectively [5].

In this work, we exploited Kaldi [24] for building speech recog-
nition systems and CNTK [25] for training our novel DNN archi-
tectures. We first followed the officially released kaldi recipe to

build an LDA-MLLT-SAT GMM-HMM model. This model uses
39-dim MFCC feature and has roughly 4K tied-states and 80K Gaus-
sians. We then use this acoustic model to generate the senone align-
ment for neural network training. In the DNN-HMM systems, 40-
dimensional log mel-filter bank features with delta and delta-delta
are used. The DNN input layer is formed from a contextual window
of 11 frames or 1320 units. The DNN baseline has 6 hidden layers
with 2048 Sigmoidal units in each layer. The networks are trained
using the stochastic gradient descent (SGD) based backpropagation
(BP) algorithm, with minibatch size of 256.

For decoding, we used the 50K-word AMI dictionary and a tri-
gram language model interpolated from the one created using the
AMI training transcripts and the other using the Fisher English cor-
pus. During the decoding we followed the standard AMI recipe and
did not rule out overlapping segments. About 10% absolute WER
reduction can be achieved if we don’t consider these segments.

Besides the standard full training set, a randomly selected 10K-
utterance subset (about 10 hours) is used for fast model training and
evaluation. The training procedures and test sets are identical in the
sub- and full-set experiments. Since the IHM and SDM data are
synchronized and the quality of the IHM data is much higher than
that of the SDM data, a simple way to exploit the close-talk data for
improving the far-field speech recognition is to use the IHM model
to generate the senone alignment and use it to train the SDM model.
The performance of these two baselines, which are comparable with
other works [5, 10], are presented in Table 1. From the table, we can
clearly observe that a substantial improvement on the SDM set can
be achieved by using alignments from the synchronized IHM data.

Table 1. WER (%) of the Baseline Systems on the SDM Data
System Alignment Sub Set Full Set

DNN-HMM SDM 68.3 58.8
DNN-HMM IHM 65.2 55.9

3.2. Evaluation of the proposed strategies

In this subsection we report our evaluation on the novel strategies
we described in Section 2. In all the experiments reported below we
used the IHM alignment since it is better than the SDM alignment
as shown in Table 1. The same 1320-dim contextually expanded
FBANK features are used as the inputs in all the novel architectures.
The performance comparisons on the baselines and the new strate-
gies for the SDM subset setup are illustrated in Table 2.

1) Multi-Condition Training: The most straightforward method
to use the IHM and SDM parallel data is the multi-condition training
(also named multi-style training [22]), which just pools all the data
from different conditions to train the model. Shown as the first two
lines in the table, multi-condition training can only provide a small
gain over the baseline. This is consistent to the conclusion in [10].

2) Dereverberation and Recognition Joint-Learning (DRJL):
As described in Section 2.2, we built a parallel and a front-back
structure. In the parallel structure the bottom 6 hidden layers are
shared for both dereverberation and recognition. In the front-back
structure 3 hidden layers are used for dereverberation whose out-
put is fed into another 3 hidden layers used for recognition. Both
structures provide meaningful gains for the far-field scenario while
the front-back structure (with a 3.7% WER reduction over the base-
line) outperformed the parallel structure (with a 2.4% WER reduc-
tion over the baseline). We believe this is because the front-back
structure can exploit the dereverberation results more directly.
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Table 2. WER (%) comparisons on the proposed strategies for us-
ing parallel data to improve the SDM condition. The 10k-utterance
subset and IHM alignment are used in all setups. (DRJL denotes
approach #1: Dereverberation and Recognition Joint-Learning;
CFMKS denotes approach #2: Close-talk and Far-field Model
Knowledge Sharing; Env-code denotes approach #3: Environment-
code aware training)

System WER (%)
DNN-HMM 65.2

IHM+SDM Multi-Cond DNN-HMM 64.2

DRJL DRJL-Structure Parallel 62.8
Front-Back 61.5

CFMKS MSE-Position
Low-Hidden 66.2
Mid-Hidden 64.5
High-Hidden 61.7

Env-code Code-Integration
Input-Layer 63.2

Hidden-Layer 62.0
Output-Layer 61.2

3) Close-talk and Far-field Model Knowledge Sharing (CFMKS):
This architecture is constructed following Section 2.3. Both the
close-talk and far-field DNNs have 6 hidden layers. The related
results are shown in the middle block of Table 2. In this study we
compared the performance of systems where the MSE constraint
(i.e., knowledge sharing) is added at different hidden layers: from
the lower layers to the higher ones. Results indicate that enforcing
knowledge sharing closer to the output layer performs better since
higher layers have stronger influence to the output.

4) Environment-code aware training (Env-code): In this setup,
the DNN for the environment representation has 4 hidden layers,
with a 100-dimension bottleneck layer in the third layer. The ASR
DNN also has 6 hidden layers. The environment-code is explored
to be integrated into the ASR DNN at different layers. The results
using this strategy are illustrated at the bottom block in Table 2. The
results indicate that the proposed environment-dependent represen-
tation is useful, and integrating this code into the acoustic model is
effective for the far-field speech recognition. Among the different
integration strategies, connecting environment-codes to the output
layer achieves the best performance. This is likely because at the
output layer the environment code can have more direct effect to the
estimated posteriors.

Figure 4 summarizes the comparison of the proposed strategies
using the parallel data on the subset, and the new architectures all
get a large improvement for the distant speech recognition.

At the first glance it seems that the proposed novel architectures
are quite complicated. In fact, however, there is no additional com-
putational cost in the DRJL and CFMKS architectures during de-
coding, and there is only slight additional cost in the Env-code ar-
chitecture caused by the code-representation DNN. In other words
all these new models are suitable for real-time applications.

3.3. Evaluation on the full set

In this subsection we evaluate and compare the best configuration in
each proposed strategy on the full AMI SDM corpus. The results
listed in Table 3 show that the gains we observed on the subset can
be carried over to the full set although the improvement becomes
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Fig. 4. Comparison of the proposed strategies using the parallel data.

smaller.
We further investigate whether additional WER reduction can be

obtained by combining different strategies. From the last two rows in
Table 3 we can see that these architectures may be complementary,
and we do get additional gains when combining DRJL with CFMKS.
However, no additional improvement is observed when further inte-
grating the Env-code strategy.

Overall, by exploiting the IHM data, we reduced the WER from
58.8% to 53.2%, a 10% relative reduction. Half of the gain is from
using the IHM alignment and half of the gain is from using our novel
architectures that exploit IHM data.

Table 3. WER (%) Comparisons of the Proposed Strategies on the
Full Set, all with IHM alignment

System Sub Set Full Set
DNN-HMM 65.2 55.9

DRJL 61.5 53.8
CFMKS 61.7 54.0
Env-code 61.2 54.0

DRJL+CFMKS 60.1 53.2
DRJL+CFMKS+Env-code 59.7 53.3

4. SUMMARY

In this paper we proposed several novel architectures for exploiting
the parallel data for improving far-field speech recognition. The key
ideas we explored include the dereverberation and recognition joint-
learning that integrates the dereverberation and classification com-
ponents into the same architecture, the close-talk and far-field model
knowledge sharing that enables IHM model to transfer knowledge
to the SDM model by adding constraints between hidden layers of
two DNNs, and the environment-code aware training that utilizes the
parallel data to extract the environment representation and use it in
the recognition DNN. All these novel architectures are trained with
the multi-task learning strategy by jointly optimizing multiple crite-
ria. All the proposed architectures are effective and can improve the
far-field speech recognition accuracy. Overall, we reduced the WER
on the SDM set by 10% relatively over the baseline by exploiting the
IHM data.

In this study, we explored the novel architectures upon the DNN
model. We will apply the same idea to the long short-term memory
(LSTM) recurrent neural networks as the next step.
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