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ABSTRACT 
 
Robustness against noise is crucial for automatic speech 

recognition systems in real-world environments. In this 

paper, we propose a novel approach that performs robust 

ASR by directly recognizing ratio masks. In the proposed 

approach, a deep neural network (DNN) is first trained to 

estimate the ideal ratio mask (IRM) from a noisy utterance 

and then a convolutional neural network (CNN) is employed 

to recognize estimated IRMs. The proposed approach has 

been evaluated on the TIDigits corpus, and the results 

demonstrate that direct recognition of ratio masks 

outperforms direct recognition of binary masks and 

traditional MMSE-HMM based method for robust ASR. 
 

Index Terms— Robust ASR, Ideal Ratio Mask, Ideal 

Binary Mask, CNN, DNN 

 

1. INTRODUCTION 

 

The performance of traditional speech recognition systems 

degrades substantially in noisy environments, which is 

largely due to the mismatch between training and test 

conditions such as different background noises, different 

channels, different speaker characteristics and different 

input SNRs. Many methods are proposed in the past few 

years [8]. Feature domain methods extract robust speech 

features such as RASTA-PLP [2] or de-noise the noisy 

speech first before recognition. Model domain methods [5] 

change the parameters of a speech recognizer to account for 

the effect of distortions. Other methods such as SPLICE [1] 

utilize prior knowledge about the distortions based on so-

called stereo data and reconstruct the clean speech from 

noisy speech. Methods such as VTS [9] explicitly model the 

effect of noise and channel distortions on clean speech for 

model adaptation and distortion estimation. Although many 

methods are proposed, a lot of research remains to be done 

to make ASR robust in real-world environments. 
Recently, supervised speech separation (e.g. [20]) has 

shown considerable potential as a front end for robust 

speech recognition [19][10][18]. These methods typically 

estimate the ideal binary mask (IBM) – a binary T-F mask 

that identifies speech dominant and noise dominant T-F 

units, or the ideal ratio mask (IRM) – a ratio T-F mask that 

represents the ratio of speech energy to the mixture energy 

within each T-F unit. An estimated mask is then used as a 

front-end to enhance the noisy speech [11][7]. Afterwards, 

the enhanced speech is recognized by a recognizer trained 

using enhanced or noisy speech. One motivation for using a 

masking based method is that the IBM itself seems to 

encode adequate phonetic information for speech 

recognition [16]. Based on this insight, Narayanan and 

Wang [12] proposed a new recognition method by directly 

recognizing an estimated IBM of a noisy utterance. This 

highly different method gives significant improvements over 

an MMSE-HMM based method, especially at low input 

SNR conditions. 

Clearly a ratio mask contains more information than a 

binary mask. Does the IRM contain more phonetic 

information for robust speech recognition than the IBM? 

Are there performance differences in estimated IBM and 

estimated IRM for ASR? 

In this study, we extend the Narayanan and Wang 

technique [12] to the ratio masking domain, and recognize 

ratio masks as visual patterns for the purpose for ASR. In 

addition, we employ a DNN for mask estimation rather than 

a traditional CASA method. Our method yields significant 

improvements in recognition rate on the TIDigits corpus [6]. 

The superior performance of ratio mask recognition over 

binary mask recognition suggests that ratio masking may be 

more suitable for robust ASR than binary masking. 

 

2. SYSTEM DESCRIPTION 

 

The key idea behind our system is the direct recognition of 

estimated IRMs of noisy utterances as visual patterns. 

Figure 1 shows the typical IRMs for 11 noisy isolated digit 

utterances (0-9 and ‘oh’) along with the corresponding 

IBMs. We can see that both IRMs and IBMs have distinct 

visual patterns. In addition, the IRM contains more 

information than the IBM because of its continuous values. 

The proposed method uses DNN to estimate the IRM and 

then uses CNN to recognize estimated IRMs.  
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Figure 1. Comparison between typical IRMs (upper row) and IBMs (lower row) of 11 noisy digit utterances 0-9 and ‘oh’, arranged from left to right. These 

noisy utterances are created by mixing each clean single digit utterance with 32-speaker babble noise at 6 dB. The LC for calculating IBMs is set to 0 dB. 

2.1 IBM and IRM 

 

The IBM is a T-F mask calculated from premixed clean 

speech and noise. The clean speech and noise, scaled to a 

specific input SNR, are passed through a 64-channel 

gammatone filterbank with central frequencies ranging from 

50 Hz to 8000 Hz on the equivalent rectangular bandwidth 

rate scale. The resulting signal of each channel is then 

divided into 20-ms frames with 10-ms overlap, producing a 

cochleagram for clean speech and noise, respectively [15]. 

For each T-F unit in the IBM, its value is set to 1 if the 

instantaneous SNR within that T-F unit is greater than a pre-

defined local SNR criterion (LC) and 0 otherwise. 

Quantitatively, the IBM is defined [14] as 

I𝐵𝑀(𝑡, 𝑓) = {
1, 𝑖𝑓 𝑆𝑁𝑅(𝑡, 𝑓) > 𝐿𝐶

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              

 

The LC is set to 0 dB in our experiments. 

The definition of the IRM is similar [13]. Rather than 

binary values, the IRM uses the ratio of speech energy over 

mixture energy within each T-F unit, i.e. 

I𝑅𝑀(𝑡, 𝑓) =
𝑆2(𝑡, 𝑓)

𝑆2(𝑡, 𝑓) + 𝑁2(𝑡, 𝑓)
 

              =
10𝑆𝑁𝑅(𝑡,𝑓)/10

10𝑆𝑁𝑅(𝑡,𝑓)/10 + 1
 

where 𝑆2(𝑡, 𝑓) and 𝑁2(𝑡, 𝑓) denote the speech energy and 

noise energy at a particular T-F unit, respectively. 

 

2.2 Mask Estimation 

 

At the test stage, we only have mixtures of clean speech and 

noises, so we need to estimate the mask of each mixture. We 

use a DNN for mask estimation, which has been 

successfully applied to supervised speech separation in the 

past few years [20]. The diagram of mask estimation in our 

approach is shown in Figure 2. In our experiments, all 

DNNs have two hidden layers and each hidden layer has 

1024 sigmoid units. In the output layer, there are 64 sigmoid 

units which correspond to the number of frequency channels. 

No pre-training is used in our experiments. The dropout 

ratio of the hidden layers and input layer is set to 0.3 and 0.1, 

respectively. The maximum L2 norm of the incoming 

weights of each neuron is chosen to be 10. Standard back-

propagation algorithm is used to train the network with 

mini-batch size 1024. The maximum number of epochs is 

set to 200. The learning rate is linearly decreased from 1 to 

0.001. The momentum is increased from 0.5 to 0.95 in the 

first 60 epochs and kept fixed at 0.95 afterward. The 

network is trained to minimize the mean square error frame-

wisely, and the labels for training DNN come from ideal 

masks. Note that these parameters are selected to minimize 

the validation error of IBM estimation on a validation set. 

When training DNN for IRM estimation, we use exactly the 

same parameters to facilitate comparison. 

The features we use for mask estimation consist of a 

complementary frame-level feature set [17] and its delta 

components. The complementary feature set contains 31 

dimensional mel-frequency cepstral coefficients (MFCC), 

64 dimensional gammatone filterbank power spectra (GF), 

13 dimensional relative spectral transformed perceptual 

linear prediction coefficients (RASTA-PLP) and 15 

dimensional amplitude modulation spectrogram (AMS). To 

further incorporate temporal context, we splice a five-frame 

window as the input to the DNN. So in our approach, the 

input feature dimension is 1230 ((31+64+13+15)x2x5), and 

the output dimension is 64 which corresponds to the number 

of filter channels in one frame. 

After obtaining an estimated mask of a noisy utterance, 

its centroid is calculated, and then used to extract a 64x64 

image for later recognition by choosing 32 frames on the left 

and 31 frames on the right side of the centroid. Note that a 

64-frame window is longer than all the single digit 

utterances in the TIDigits corpus. 

DNN
Cropped to

64x64

Feature 

extraction

Feature matrix

Five-frame 

window

Noisy utterance

 
Figure 2. Diagram of DNN based mask estimation 

 

2.3 Mask Recognition 

 

CNN has shown considerable success in digit recognition 

from gray-scale images. Since CNN can capture local 

topology and is relatively invariant to small shift and 

distortion in an image, it is very suitable for image 
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recognition [3]. In this study, we employ CNN to recognize 

estimated masks for three reasons. First, the ratio masks as 

shown in Figure 1 clearly show characteristic visual patterns. 

Second, generally speaking, the centroid of an estimated 

mask cannot be calculated perfectly, so translational 

invariance is a desired property to overcome this issue. 

Third, there are substantial distortions in the masks for 

different types of noises and input SNR conditions. For 

these reasons, CNN is chosen for our mask recognition. 

The architecture of CNN in our experiments is shown in 

Figure 3. It follows the CNN used in [12] for binary mask 

recognition and is similar to LeNet5 [4]. Layer C1, C3 and 

C5 are convolutional layers with kernel size 5x5, 6x6 and 

5x5, respectively. S2 and S4 are mean pooling layers with 

kernel size 3x3. The output layer is fully connected to the 

preceding layer and has 11 units which correspond to the 11 

ratio patterns we want to recognize. The feature map size of 

C1, C3 and C5 are set to 7, 20 and 150, respectively. The 

network is trained using the stochastic diagonal Levenberg-

Marquardt algorithm for 20 epochs. A validation set is used 

for early stopping and parameter tuning. 

C1: 7@60x60 S2: 7@20x20 C3: 20@15x15 S4: 20@5x5 C5: 150@1x1

Output: 11

 
 

Figure 3. The architecture of CNN for mask recognition 

In addition, as in LeNet5, the connections between S2 

and C3 are set to incomplete connections, which force 

different feature maps to extract different and 

complementary features [4]. The connections between S2 

and C3 in our experiments are shown in Table 1, where ‘X’ 

denotes a connection between these two feature maps. In our 

experiments, we find that using incomplete connections 

between S2 and C3 brings us 7% improvement in 

recognition rate than using complete connections. 

Table 1. Incomplete connections between layer S2 and C3 

 1 2 3 4 5 6 7 8 9 10   11   12  13  14  15  16  17  18  19 20 

1 X    X X X X  X X   X X X   X X 

2 X X    X X X   X X    X X  X X 

3 X X X    X  X X  X X  X   X X X 

4 X X X X     X X X  X X  X X X  X 

5  X X X X   X   X X  X X   X X X 

6   X X X X  X X   X X   X X   X 

7    X X X X  X X   X X X  X X  X 

 

3. EXPERIMENTAL SETTINGS 

 

In order to make a direct comparison with the binary mask 

recognition approach [12], we use a similar experimental 

setup. A single digit utterance subset of the TIDigits corpus 

is utilized to evaluate our proposed method. Our training 

and test utterances consist of all the single digit utterances of 

55 male speakers and all the single digit utterances of 56 

different male speakers, respectively. There are 11 digits (0-

9 and 'oh') in total. Each digit is spoken by each speaker for 

two times. We use speech shape noise, 32-speaker babble 

noise and cocktail party noise as our training and test noises. 

The latter two noises are non-stationary. 

The DNN based ratio mask estimator in our system is 

trained through multi-condition training. The training set for 

mask estimation is constructed by mixing each clean 

training utterance with each noise at -6, -3, 0, 3, 6, 9 and 12 

dB. A validation set which contains the noisy utterances of 

five randomly selected speakers is kept separate from the 

training set for parameter tuning and early stopping.  

The CNN based mask recognizer in our system is trained 

using IRMs created by mixing each clean training utterance 

with each noise only at 6 dB. Before training, each IRM is 

cropped into a 64x64 image by using the center of speech 

range as the centroid. When testing, the centroid of each 

estimated mask is calculated using the method described 

earlier. A validation set which contains the IRMs from the 

same five speakers as used in the validation set of mask 

estimation is kept separate from the training set for 

parameter tuning and early stopping.  

The test set for our overall system is constructed by 

mixing each clean test utterance with each noise at -6, -3, 0, 

3, 6, 9 and 12 dB. By including different input SNR 

conditions in the test set, we can test the generalization 

ability of the CNN based mask recognizer. 

 

4. RESULTS AND DISCUSSIONS 
 

We first report the results of directly recognizing cropped 

IRMs using correct centroids (center of the speech range) 

based on the CNN trained on IRMs, and this will give us the 

ceiling performance of our proposed method. Figure 4(a) 

shows that the average recognition rates of all the noise 

types at all the seven input SNR conditions are greater than 

98%. In the same figure, we also present the result of 

directly recognizing cropped IBMs with correct centroids on 

the same noisy utterances using the same CNN but trained 

on IBMs. Our obtained result on IBM recognition is very 

close to the result reported in Fig. 3(d) of [12]. By 

comparison, we can see that the IRM based result is better 

than the IBM based result. For these two approaches, the 

best recognition rate occurs when input SNR is at 6 dB, 

which is expected since it is the same as the training SNR of 

the CNN based mask recognizer. When input SNR increases 

or decreases, the performance for both recognizers drops. 

This drop is largely due to the mismatch between training 
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     (a)                                                                                         (b) 

Figure 4. Average recognition results of different noises at different input SNRs. (a). Average results of directly recognizing IRMs and IBMs with correct 

centroids using CNN. (b). Average results of recognizing estimated IRMs and estimated IBMs with estimated centroid using CNN, the method used in [12] 
and the MMSE-HMM approach.  

and testing SNR. Take the IBM as example. When input 

SNR increases from 6 dB, more and more 1's will occur in 

the IBM. Similarly, when input SNR decreases from 6 dB, 

there will be fewer and fewer 1’s. As a result, test IBMs will 

be different from training IBMs. We can also see from 

Figure 4(a) that, during testing, the IBM recognizer suffers 

more from the SNR mismatch. This is probably because, for 

the IRM, the value of each T-F unit is between 0 and 1 

rather than binary, therefore more discriminative structure 

would be retained than by the IBM recognizer, especially in 

low input SNR conditions. 

In Figure 4(b), we report the result of recognizing 

cropped estimated IRMs with estimated centroids. Note that 

this is a realizable system. As shown in Figure 4(b), the 

recognition rate is above 95% when input SNR is greater 

than or equal to -3 dB. The performance is still greater than 

90% when input SNR drops to -6 dB.  

We now compare our approach with the binary mask 

based approach, both using estimated centroids when 

cropping. We can see that our method outperforms the one 

in [12] in all input SNR conditions. As in the ideal mask 

case, the performance gap is greater when input SNR 

decreases. Besides the reason mentioned before, the larger 

gap may reflect the fact that, for IBM estimation, a threshold 

(0.5 in this study) needs to be set to make final binary 

prediction, which may lead to loss of discriminative 

information for IBM estimation. For IRM estimation, there 

is no need to set a hard threshold. Figure 4(b) also shows the 

corresponding results by Narayanan and Wang and a 

traditional MMSE-HMM approach on the same dataset 

(Figure 3(d) in [12]). In the MMSE-HMM system, there are 

12 word level models (0-9, oh and silence), each with 8 

states. Every state emission probability is modeled as a 

mixture of 10 Gaussians. The features for training are the 

MFCC feature extracted from clean utterances. The 

language model is designed to only allow one digit in an 

utterance. At the test stage, noisy utterances are first 

enhanced using the MMSE algorithm before decoding. The 

recognition rates of MMSE-HMM are close to but lower 

than those of the binary mask based method when input 

SNR is 12 dB. At other lower input SNR conditions, its 

performance is significantly worse than both of our ratio and 

binary mask methods. As shown in Figure 4(b), the DNN 

based IBM estimator in this study also brings significant 

improvements over the traditional CASA estimator used in 

[12]. 

 

5. CONCLUDING REMARKS 
 

In this study, we have proposed a novel method to perform 

robust ASR by directly recognizing estimated IRMs of noisy 

utterances as visual patterns. The experiments on the 

TIDigits corpus suggest that ratio masks encode more useful 

information for robust ASR than binary masks, especially in 

low input SNR conditions.  

Spoken digit recognition is not a challenging task in 

ASR, and future work needs to address more challenging 

robust recognition problems. Nonetheless, the findings in 

our study indicate that, at a minimum, ratio masks obtained 

from supervised speech separation likely contain 

discriminative information not exploited in traditional 

methods of robust ASR, and hence can complement these 

methods for further performance improvements. 
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