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ABSTRACT

A new voice activity detection (VAD) algorithm is proposed.

The proposed algorithm is the combination of augmented sta-

tistical noise suppression (ASNS) and convolutional neural

network (CNN). Since the combination of ASNS and sim-

ple power thresholding was known to be very powerful for

VAD under noisy conditions, even more accurate VAD is ex-

pected by replacing the power thresholding with the more

elaborate classifier. Among various model-based classifiers,

CNN with noise adaptive training presented the highest accu-

racy, and the improvement was confirmed by the experiments

using CENSREC-1-C public database.

Index Terms— Voice activity detection, noise suppres-

sion, neural network, noise adaptive training, CENSREC-1-C

1. INTRODUCTION

Even with today’s technology that is capable of recognizing

complex spoken sentences, simple two-class classification be-

tween speech and non-speech is still very difficult in noisy en-

vironments. The task is called voice activity detection (VAD),

and has been studied for many years with intent to apply for

telecommunication and automatic speech recognition.

Since most VAD systems work as a classifier for short-

term periods (frames) followed by inter-frame smoothing,

two major approaches have been studied thoroughly to im-

prove the VAD accuracy. The first approach tried to find

better framewise features. The proposed features include

instantaneous power, zero-crossing rate [1], cepstral features

[2], spectral entropy [3], periodic-aperiodic component ratio

[4], and higher order statistics [5]. The second approach fo-

cused on the classifier. Gaussian mixture model (GMM) [6]

and Support vector machine (SVM) [7] are typical classifiers,

and then many types of deep neural networks (DNNs) are

being proposed these days [8, 9, 10].

Combination of feature extraction and classification is a

simple and effective VAD framework. However, if the sta-

tionary noise is the main cause of degraded VAD accuracy,

it is necessary to deal with inter-frame relationship of noise

signals. From this viewpoint, Sohn et al. [11] proposed to use

the decision-directed estimation [12] of the noise estimation

parameter to integrate inter-frame information into their like-

lihood ratio test (LRT) based classifier. Using hidden Markov

model (HMM) [13], conditional random field (CRF) [14],

and order statistics filter (OSF) [15] are similar approaches to

consider inter-frame dependencies. Recently, Fujimoto [16]

introduced another temporal model of switching Kalman fil-

ter (SKF), and showed significant improvement from Sohn’s

method. In the case of DNN, a recurrent neural network could

be an example of explicit temporal processing, as in [9].

Although there have been many ways to combine frame-

wise classification and inter-frame estimation, the author

recently showed that even a simple framewise classifier of

power thresholding could outperform other VAD algorithms,

if it is combined with the augmented implementation of the

state-of-the-art noise suppression algorithm [17]. In other

words, it is not optimal to design the best classifier and then

introduce temporal processing scheme within the constraint

of the classifier. It is optimal to design the best temporal

processing scheme (noise suppression) and then find the best

classifier for the noise suppressed signal. Based on this idea,

this paper tries to contribute to the classifier finding part,

which was not investigated enough in our previous paper

[17]. The proposed algorithm is a sequence of augmented

statistical noise suppression (ASNS), framewise speech/non-

speech classification using convolutional neural networks

(CNNs), and inter-frame smoothing. By enforcing the clas-

sification capability of the second part, whereas keeping the

precise noise suppression capability of the first part, the pro-

posed algorithm shows still more accurate VAD results than

others, which is confirmed by the experiments using a public

evaluation framework CENSREC-1-C [18].

The remainder of this paper is organized as follows. In

the next section, augmented implementation of the noise sup-

pression algorithm is described. In Section 3, CNN and other

framewise classifiers are introduced, together with a brief de-

scription of inter-frame smoothing. In Section 4, we discuss

more about noise adaptive training of classifiers. Experimen-

tal results are presented in Section 5, and the last section is

for conclusions.
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2. NOISE SUPPRESSION

In the proposed VAD framework, the input signal is first fed

into the noise suppression module. The noise suppression

(ASNS) algorithm used in this paper is based on the aug-

mented implementation of optimally modified log spectral

amplitude (OM-LSA) speech estimator [19]. More precisely,

ASNS is defined as the gain function in the time-frequency

domain as follows.

|X̂(k, l)|2 = G(k, l)β |Y (k, l)|2 (1)

where Y (k, l) denotes the k-th frequency component of the

observed noisy signal at the l-th frame. β is the gain aug-

mentation parameter. G(k, l) is the gain to be estimated, and
X̂(k, l) is the corresponding noise-suppressed signal. Before
obtainingG(k, l), we first calculate the LSA gainGH(k, l) by
the following equations using the subtraction coefficient α.

GH(k, l) = f(ξ(k, l), γ(k, l)) (2)

f(ξ, γ) =
ξ

1 + ξ
exp(

1

2

∫

∞

γξ/(1+ξ)

e−t

t
dt) (3)

γ(k, l) =
|Y (k, l)|2

ασ2
m(k, l)

(4)

ξ(k, l) = 0.99G2
H(k, l−1)γ(k, l−1)

+0.01max{γ(k, l)−1, 0} (5)

The OM-LSA gainG(k, l) is obtained by modifying LSA
gain GH(k, l).

G(k, l) = [GH(k, l)]p(k,l)G
1−p(k,l)
min (6)

p(k, l) = [1 + 0.25(1+ξ(k, l))e−ν(k,l)]−1 (7)

ν(k, l) = γ(k, l)ξ(k, l)/(1 + ξ(k, l)) (8)

where Gmin was set as 0.01.

In the case of speech recognition, the optimal value of the

subtraction coefficient α is less than 1.0 because the larger α
we use, the more distorted signal we get [20]. However, such

distortion is less harmful for VAD, and a larger value of α
makes the VAD system more noise-tolerant.

Once the amplitude |X̂(k, l)| is estimated for each half-

overlapping frame, the phase of the observed signal is com-

bined to reproduce the complex spectrum. Finally, inverse

fast Fourier transform and overlap addition are applied to

make the noise suppressed signal waveform.

3. FRAMEWISE SPEECH/NON-SPEECH

CLASSIFICATION AND SMOOTHING

After noise suppression, the signal is divided into frames

again, but this time the frame rate and frame width are op-

timized for the VAD purpose. Waveform of each frame is

converted to the spectrum (or spectrum-based feature vector),

and fed into the speech/non-speech classifier.

In this paper, four different classifiers are investigated.

The simplest classifier is power thresholding, defined by

Ĥ(l) =

{

H0 (p(l) < θ)

H1 (p(l) ≥ θ)
(9)

where Ĥ(l) is the hypothesis for the l-th frame, which takes
either H0 (non-speech) or H1 (speech), p(l) is the frame

power, and θ is the threshold. In [17], we proposed to use the
augmented frame power calculation,

p(l) =

K
∑

k=0

w(k)|X̂(k, l)|2 (10)

w(k) =

{

wA(k) rank(k) ≥ ηK

0 otherwise
(11)

where rank(k) is the number of frequency components in the
same frame whose magnitude is larger than the k-th compo-
nent. K is the total number of frequency components, η is an-
other augmentation parameter, and wA(k) is the A-weighting
filter coefficient.

The other three classifiers are decision tree (DT), SVM,

and CNN. For those three classifiers, the spectrum of each

frame is converted to 40 log mel filterbank energies. Five suc-

cessive frames are concatenated, and the resulting 200 dimen-

sion feature vector represents the central frame. Each frame

of the training data has the correct label H(l), so that two-

class classifiers of DT, SVN, and CNN can be trained.

Since speech segments often include short silent (or very

soft) periods, results of the framewise classification are modi-

fied by inter-frame smoothing. First, speech segments shorter

than two frames are eliminated, and then non-speech seg-

ments shorter than 80 frames are re-labeled as speech. Fi-

nally, eight (power thresholding) or four (DT, SVM, and

DNN) margin frames on the both sides of speech segments

are re-labeled as speech. The shorter margin was used for DT,

SVM, and DNN because the feature vector itself includes ad-

jacent frames.

4. NOISE ADAPTIVE TRAINING OF CLASSIFIERS

While the speech/non-speech classifier can be trained using

a clean speech corpus, it becomes more robust under noisy

conditions if it is trained using a noisy speech corpus and the

noise suppression module. Such strategy is called noise adap-

tive training (NAT), and proved to be effective in the case of

speech recognition [21].

Although it is difficult to predict the noise type and signal-

to-noise ratio (SNR) beforehand, we can use some typical

noises and SNRs. In this paper, in-car noise and cafeteria

noise are added to the clean training corpus with 0dB, 5dB,

and 10dB SNR. Prior distribution for those noise conditions

is flat, meaning that all the noisy data are simply piled up,

cleaned by noise suppression, and used for classifier training.
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Table 1. Numbers of frames in Noisy UT-ML-JPN database

speech non-speech

Training 616,566 738,168

Test 86,958 136,308

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

The proposed VAD framework was evaluated using two sets

of databases: original synthesized database and CENSREC-

1-C [18]. The original database, which is referred to as

“Noisy UT-ML-JPN” in this paper, was made from Japanese

subset of UT-ML database [22], by concatenating one second

silence at the both sides of each utterance, and then adding

our proprietary noise data (in-car and cafeteria, 0/5/10dB).

Speech/non-speech labels were generated automatically by

applying a power threshold for clean data. Inter-frame

smoothing was not applied for this database in order to focus

on the framewise classification only. The Japanese subset

of UT-ML includes six male and six female speakers. Each

speaker read one long article (54.8sec on average) and 50

short phrases (3.3sec on average). Five male and five female

speakers were used for training, and one male and one female

were used for test. All data were downsampled to 8kHz, and

framed using 32ms (noise suppression) or 20ms (VAD) half-

overlapping window. The numbers of speech and non-speech

frames in the training and test sets are shown in Table 1.

CENSREC-1-C is a public evaluation platform for VAD.

Only the real subset is used in this paper. It includes concate-

nated Japanese digit utterances recorded in a crowded uni-

versity restaurant and in the vicinity of a highway mainline.

Total 160 utterances (sampled by 8kHz) by five male and five

female speakers are provided with the hand-labeled endpoint

information.

Classifiers were evaluated with the help of publicly avail-

able tools. WEKA [23] was used for DT and SVM, and Caffe

[24] was used for CNN.

5.2. Classifier training

As described in Section 4, noise adaptive data were used to

train DT, SVM, and CNN classifiers. ASNS (α = 5.0, β =
1.4) was applied to the training set of Noisy UT-ML-JPN

database, and the noise-suppressed signals were used to train

classifiers. The clean UT-ML-JPN training data were also re-

served for comparison.

Although we have plenty of training data, the training

process of WEKA is relatively slow for 1.4 million training

samples. Therefore, we adopted “ensemble of classifiers” ap-

proach. The training data were divided into 100 subsets, each

of which was used to train a separate classifier. In the eval-
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Fig. 2. Classification accuracy for matched data.

uation phase, each frame of the test data is classified by the

ensemble of the classifiers, and the obtained labels are used

for voting.

5.3. Evaluation of classifiers using matched data

The first set of evaluation experiments were conducted using

Noisy UT-ML-JPN database. Since the training and test data

contain the same type of noises, it should be regarded as the

matched condition evaluation. All test utterances were pro-

cessed by ASNS in the same way as the training data, divided

into frames, and fed into the framewise classifier.

Figure 1 shows the classification accuracy of ensemble

voting by DT and SVM. The horizontal axis represents the

number of classifiers. The vertical axis represents the accu-

racy, which is the ratio of correctly classified frames to the

total frames. Although a DT classifier tends to suffer from

overfitting, it could be compensated by ensemble voting and

the accuracy rises when multiple classifiers are used. A sim-

ilar trend can be observed for SVM, but the overfitting prob-

lem is not as serious as DT. In both cases, the accuracy almost

saturates by 30 or 40 classifiers.

Figure 2 shows the classification accuracy for the test set

of Noisy UT-ML-JPN, obtained by various classifiers. In the

case of power thresholding, the value of η was fixed at 0.07.

The plotted accuracy is the best value among those obtained

with various threshold values. For DT and SVM, the accura-
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Fig. 3. Comparison of classifiers built in the ASNS-based

VAD system. FAR and FRR were calculated using the script

distributed with the CENSREC-1-C package.

cies of 100 classifier voting were plotted. From these results,

it was confirmed that a large (> 3% absolute) improvement

was realized by DT and SVM.

Several CNNs with different depth were also evaluated.

After the convolution (3x3, 20 filters) and pooling (2x2)

layers, single or multiple fully-connected layers (100 nodes

each) are prepared, and the final layer has two output nodes

corresponding to the speech and non-speech hypotheses. In

Fig. 2, L represents the number of fully-connected layers.

Another CNN with L = 3 was trained using the clean data,
and the corresponding accuracy was also plotted. From these

results, the effectiveness of NAT was confirmed, and it was

observed that the deeper network achieves the higher VAD

accuracy, although even the shallowest CNN outperformed

DT and SVM slightly.

5.4. Evaluation of total VAD system using real data

Next, various classifiers were built into the total VAD system,

and evaluated using CENSREC-1-C. The noise condition is

open for these experiments. However, the training and test

data both include babble noises and traffic noises (although

recorded in car and outside of car), so the condition is favor-

able to the model-based classifiers.

Since the audio gain was not calibrated between the train-

ing and test data, at least one adjustable parameter is neces-

sary to keep the reasonable accuracy. In the case of power

thresholding classifier, the threshold plays that role. In the

case of model-based classifiers, an adjustable gain is applied

to the input signal instead. As the results, receiver operat-

ing characteristic (ROC) curves are obtained by plotting false

acceptance rates (FARs) and false rejection rates (FRRs) cor-

responding to those threshold or gain parameters. Figure 3

shows the ROC curves of power thresholding, DT, SVM, and

three types of CNNs. Considering the saturation trend found

in Fig. 2, DT and SVM were evaluated using 40 classifier

voting to save the execution time.

Although Fig. 3 presents the similar tendency as Fig. 2, a
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noticeable difference is that a deeper CNN no longer achieves

the better results. In fact, the ROC curve nearest to the lower-

left corner was obtained with the shallowest CNN (L = 1).
It indicates that the deeper CNN has learned the condition-

specific nature of the Noisy UT-ML-JPN database, and it did

not help to improve the accuracy of the shallower CNN under

different conditions.

To confirm the improvement by introducing CNN as the

framewise classifier, the ROC curves of various VAD algo-

rithms were plotted in Fig. 4. It was already mentioned in

[17] that the VAD accuracy can be greatly improved by intro-

ducing ASNS. That finding was re-confirmed in these exper-

iments as the difference between SNS-thres and ASNS-thres.

Moreover, it can be observed that the combination of ASNS

and CNN achieves additional improvement1, and the resulted

FAR (9.15%) and FRR (9.83%) are the lowest among the pub-

lished works for CENSREC-1-C.

6. CONCLUSIONS

In this paper, a new framewise speech/non-speech clas-

sifier was introduced to the augmented statistical noise

suppression-based VAD system. The new classifier is re-

alized as a convolutional neural network, and outperforms

simple power thresholding as well as DT and SVM classi-

fiers. A deeper CNN achieved higher accuracy under the

matched condition, but the shallower CNN was slightly more

accurate under the unmatched condition. Evaluation experi-

ments using CENSREC-1-C public database showed that the

proposed system provides higher VAD accuracy than other

state-of-the-art algorithms.

1The reader may notice that the ROC curve of ASNS-thres in Fig. 4 is

not exactly the same as that of [17]. It is because the author has changed

the affiliation and wrote the ASNS program from the scratch, which is not

identical to the older version. However, the improvement from ASNS-thres

to ASNS-CNN using the same ASNS program was clearly confirmed as in

Fig. 4.
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