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ABSTRACT

Speech activity detection (SAD) is an essential component of most
speech processing tasks and greatly influences the performance
of the systems. Noise and channel distortions remain a challenge
for SAD systems. In this paper, we focus on a dataset of highly
degraded signals, developed under the DARPA Robust Automatic
Transcription of Speech (RATS) program. On this challenging data,
the best-performing systems are those based on deep neural net-
works (DNN) trained to predict speech/non-speech posteriors for
each frame. We propose a novel two-stage approach to SAD that
attempts to model phonetic information in the signal more explic-
itly than in current systems. In the first stage, a bottleneck DNN
is trained to predict posteriors for senones. The activations at the
bottleneck layer are then used as input to a second DNN, trained
to predict the speech/non-speech posteriors. We test performance
on two datasets, with matched and mismatched channels compared
to those in the training data. On the matched channels, the pro-
posed approach leads to gains of approximately 35% relative to our
best single-stage DNN SAD system. On mismatched channels, the
proposed system obtains comparable performance to our baseline,
indicating more work needs to be done to improve robustness to
mismatched data.

Index Terms— Speech activity detection, deep neural networks,
bottleneck features, degraded channels

1. INTRODUCTION

Speech-activity detection (SAD) is an essential component in many
speech processing tasks, such as speech recognition, speaker ver-
ification, and language identification. SAD can also be used in a
scenario where vast amounts of audio data are searched for the rare
presence of speech. Errorfull SAD can greatly degrade the perfor-
mance of these systems [1].

Though most SAD systems work well on relatively clean sig-
nals, their performance greatly degrades with the presence of noise.
In recent years, the DARPA RATS program has provided a great op-
portunity for researchers to work on very challenging noisy and dis-
torted data, with a focus on speech activity detection, keyword spot-
ting, language identification, and speaker verification. Under this
program, performance of SAD systems in highly degraded acoustic
conditions has been greatly improved by using different techniques,
such as long-span and robust features, feature-level fusion and better
modeling methods [2, 3, 4, 5, 6]. The best of these systems rely on
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deep neural networks (DNNs) to predict speech and non-speech pos-
terior probabilities using many different input features, including a
wide range of features specially designed for noise robustness [5, 6].

In this work, we propose to extend the work based on DNNs to
take into account phonetic information. Humans are able to detect
speech under extreme conditions, even when they do not speak the
language or when speech is unintelligible. They expect speech to be
formed by units that sound like phones concatenated into familiar se-
quences. A region containing a sound which resembles a phone but
lasts several seconds without change would probably not be labelled
as speech by a human. While current systems can, in theory, if given
enough contextual information and enough training data, model all
this information within a single DNN trained to predict speech and
non-speech posteriors, we hypothesize that adding structure to the
problem by creating features that are phonetically rich might facili-
tate the modeling of what speech should sound like. To this end, we
propose a novel two-stage system. The first stage consists of a bot-
tleneck DNN trained to predict senone posteriors. The activations at
the bottleneck layer, which should mostly contain information about
the phonetic content [7], are then used as input into another model
to classify each frame as speech or non-speech.

The use of bottleneck activations from a DNN trained to predict
senone posteriors has been previously proposed for the speaker veri-
fication [8, 9] and language recognition tasks [10, 11]. For language
recognition, the systems based on these features have become the
state of the art, giving significantly better performance than previous
approaches [11, 12]. For speaker verification, bottleneck features
give a significant gain when fused with standard acoustic features
[8]. We hypothesize that these features should also be useful for the
SAD task, particularly because they are trained as a low-dimensional
representation of the phonetic content in each frame, which should
make them useful for discriminating speech versus non-speech. In
this paper we explore the use of bottleneck features for SAD and
show promising results, specially when the conditions in the train-
ing data for the senone DNN are matched to those in the test data.

2. GMM- AND DNN-BASED SAD

GMM-based SAD systems are composed of two GMMs, one trained
on speech frames, and another one trained on non-speech frames [4].
Given a test sample, the likelihood of the feature vector extracted
from each frame is computed with respect to each of the two mod-
els. The logarithm of the ratio of the speech and non-speech likeli-
hoods is then computed for each frame. In a final step, these LLRs
(log-likelihood ratios) are smoothed by averaging their values over a
rolling window typically 31 to 71 frames long. The final SAD deci-
sions are made by thresholding these LLRs, with a threshold chosen
based on the desired operating point. For some applications, the re-
sulting speech regions (any contiguous frames for which the LLR
value was above the threshold) are padded with a certain number of
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frames (30 in our experiments) on each side. This padding reduces
the amount of missed speech near the detected speech regions while
potentially increasing the false alarm rate.

DNN-based SAD systems compute the LLRs by using a DNN
trained to predict the posterior of the speech and non-speech classes
at the output layer. The posteriors are converted into LLRs by using
Bayes rule, assuming equal priors for both classes. These LLRs are
processed the same way as for the GMM-based systems to obtain the
SAD decisions.

For both of these families of systems, the input features are gen-
erally mel frequency cepstral coefficients (MFCCs), perceptual lin-
ear prediction (PLPs), or log mel filter bank energies (LMFBs), con-
catenated over several frames (generally, 31) to include contextual
information. Dimensionality reduction techniques can be used on
the concatenated vector [2, 3]. For GMM modeling, contextual in-
formation is sometimes represented through deltas and double deltas
or a discrete cosine transform [4]. Other options, like cortical fea-
tures, which are already long-term, have also been used [5].

3. PHONETICALLY AWARE SAD SYSTEM

We propose a two-stage approach to SAD in which the first stage
operates as a feature extractor for the second stage, which is a
standard DNN-based SAD system as described above. Figure 1
shows a scheme of the system. The features generated by the first
stage are given by the activations in a bottleneck layer of a DNN
trained to predict senone posteriors. Senones are defined as tied-
states within context-dependent phones and are the unit for which
observation probabilities are computed during automatic speech
recognition (ASR). Given that the posteriors at the output layer of
the DNN have to be computed as a function of only the activations
in the bottleneck layer, we can see these bottleneck (BN) features
as a low-dimensional representation of the phonetic content in each
frame. This should make these features useful for discriminating
speech versus non-speech. The input features to the senone DNN
are given by standard frame-level acoustic features concatenated
over a relatively short context.

The second stage in the proposed approach models these fea-
tures using the same procedure as for standard acoustic features,
training a DNN to predict SAD labels. As for the baseline system,
contextual information is provided to the SAD DNN by concatenat-
ing features from several adjacent frames. Nevertheless, because the
dimension of the BN features is relatively large, and to avoid creat-
ing very large input vectors for the DNN, we first smooth the features
across time over a window of size S frames and then take one every
S frames for concatenation.

4. EXPERIMENTS

In this section we describe the setup for our experiments and present
the results.

4.1. Train and test datasets

Both the training and test data used in the experiments came from to
the Linguistic Data Consortium (LDC) collections for the DARPA
RATS program [13]. Conversational telephone recordings were re-
transmitted using a multilink transmission system at LDC. Several
combinations of transmitters and receivers were used to retransmit,
resulting in extremely noisy and distorted signals.

For training the senone DNNs, we used the RATS keyword-
spotting (KWS) training sets for Farsi and Levantine Arabic. This
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Fig. 1. Flow diagram of the proposed phonetically-aware SAD sys-
tem. The number of nodes in each layer are kept small for this
schematic figure but the number of layers in both DNNs are the ones
used for the experiments. A bottleneck DNN is trained to predict
senone targets using contextualized LMFB features. The activations
in the bottleneck layer are then used as input to another DNN, after
another stage of contextualization. This second DNN is trained to
predict speech versus non-speech.

data contains eight transmission channels plus the source signals
and includes word-level transcriptions. The phonesets for the two
languages were merged, mapping the symbols that correspond to a
similar phone in the two languages to the same symbol. The Farsi
phoneset contains 29 phones, the Levantine phoneset contains 38
phones, and the merged phoneset contains 46 phones. The transcrip-
tions, mapped to use this new phoneset, were used to train an HMM-
GMM ASR system with 3353 senones. The senones were obtained
automatically using a decision tree approach. The resulting HMM-
GMM system was then used to force-align the same training data to
obtain senone-level alignments, which were used to train the DNNs.
More details on the HMM-GMM model used to create the align-
ments can be found in Section 5.1 of [14]. The same alignments
produced for that paper were used here.

Note that, for senone DNN training, only segments containing
mostly speech and short pauses are used, including some padding
on each side of a segment to ensure that they start and end during
non-speech. The KWS training data contains a total of 151 hours,
approximately 15% of it being non-speech.

For training the SAD DNNs, we used the RATS SAD training
data. Channel D was not included in the SAD data due to annota-
tion problems. The clean source was included among the channels.
This data contains 830 hours of speech and 677 hours of non-speech.
Given the large size of this data set, during GMM and DNN training
we select 1 every 5 frames.

For testing, we used data from the SAD Dev-1 collection re-
leased between 2011 and 2012, which was retransmitted using the
same channels as the training data. We call this the “seen channel”
data. We also tested on a separate dataset extracted from the novel
channel collection, released by LDC in 2014. This data was created
using different transmitter/receiver pairs, new transmitter/receiver
locations and longer distances than the original set. We used 8 of the
released channels (A, D, G, H, K, M, Q, and R), discarding the ones
with a clear problem in the annotations and leaving out some chan-
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nels for future evaluation on a held-out set (these channels are not
used for the results in this paper). The low speech-density data and
the composite data released in this collection were not used for these
experiments due to the bad quality of the annotations. We call this
the “unseen channel” data. Both datasets were divided into adapta-
tion and test sets. We do not present adaptation results in this paper.
Results are shown on the test set to keep results consistent with fu-
ture work. The seen channel data contains 4.4 hours of audio, while
the unseen channel data contains 5.6 hours. In both cases, approxi-
mately half of the time is speech.

Note that, although the channels are the same across the KWS
and the SAD training datasets and the seen channel test data, the
languages in the SAD data are a superset of those in the KWS data,
containing speech in English, Pashto and Urdu, as well as Levantine
Arabic and Farsi.

4.2. Performance metric

Two types of error can be computed for SAD: (1) the miss rate (the
proportion of speech frames labeled as non-speech) and (2) the false
alarm rate (the proportion of non-speech frames labeled as speech).
In Phase 4 of the RATS program, a “forgiveness” collar was used
around all annotated speech regions. False alarm errors over those
regions were disregarded. The official value for the collar was 2.0
seconds. Yet, because many non-speech regions in the RATS data
are quite short, this long collar reduced the amount of scored non-
speech by a large proportion, reducing the statistical significance of
the results. For this reason, for the results in this paper, we used a
smaller collar of 0.5 seconds.

The RATS metrics for SAD were the equal error rate (EER),
the miss rate when the miss and false alarm rates are equal, and the
miss rate when the false alarm rate is equal to some fixed value (e.g.,
1%). To obtain these values, the LLR threshold chosen to make the
final decisions is swiped across a range of values. These two metrics
ignore the problem of threshold selection. In practice, the thresh-
old must be selected during development. The actual error will then
depend both on the goodness of the LLRs and the choice of thresh-
old. Hence, for this work we present results in terms of a metric
commonly used in speaker recognition: the detection cost function
(DCF), sometimes also called Cdet [15]. The DCF is computed as a
weighted sum of the miss and false alarm rates. In this work, we use
equal weights. The minimum value of this DCF (when the thresh-
old is selected to optimize DCF on the test data) is, by definition,
no more than two times the EER. The actual DCF is the DCF value
when the threshold is chosen a priori, without knowledge of the test
set. In our case, we set the threshold for actual DCF to 0. This is
the optimal value for this equal-weight DCF if we assume LLRs are
well calibrated. The DCF has also been chosen as the primary metric
for the NIST OpenSAD evaluation [16], though with uneven weights
for false alarms and misses.

To obtain the DCFs we post processed the LLRs from each of
the systems as described in Section 2 using an average filter of 41
frames, thresholded them with the threshold for minimum or actual
DCE, padded each resulting speech region with 0.3 seconds on each
side, and finally summed false alarm and miss rates to calculate the
DCF. We do the calculation by channel. The reported results are
averages across channels in each of the two data sets.

4.3. Systems

We compare three different systems, two baseline systems and our
proposed system.

MFCC-GMM (baseline 1): GMM-based SAD system as described
in Section 2. Both speech and non-speech GMMs have 512 Gaus-
sians with diagonal covariance. The input features are given by 20-
dimensional MFCCs, normalized over each waveform by subtracting
the mean and dividing by the standard deviation of each coefficient,
with the exception that, for CO, the maximum is subtracted rather
than the mean. This normalization for CO gives a small but consis-
tent gain over using the mean. Contextualization for this system is
done by taking the first four DCT coefficients for each original fea-
ture across a window of 31 frames and appending those coefficients
to the feature vector corresponding to the center frame. This works
better for modeling with GMMs than the simple concatenation used
for DNNs. The final feature vector for this system is of size 100. For
this system we do not try different context lengths since, as we will
see, its performance for the 31-frame context is significantly worse
than that of the DNN baseline below.

MFCC-DNN (baseline 2): DNN-based SAD system as described
in Section 2. Three hidden layers of size 500 are used for these
DNNs. This structure was optimal in our experiments for both test
sets, though performance was quite robust to variations in the struc-
ture of the DNN, given the large amount of training data available.
The same normalized MFCC features described above are used for
this system, except that contextualization is done by concatenation.
This was found to be better than using the DCTs when DNNs are
used for modeling. The final dimension of the feature vector input to
the DNN is given by 20xW, where W is the size of the window (an
odd integer). For the longer contexts, we smooth the features with a
window of S frames, using one out of S frames for concatenation, as
also done for the BN-DNN system below. The final feature dimen-
sion is given by 20x(1+(W-1)/S). We explore different values for W
and S.

BN-DNN (proposed): As for the MFCC-DNN system, this system
consists of a DNN with three hidden layers of size 500 trained to
predict SAD labels. The input features are the activations from the
bottleneck layer of another DNN trained to predict 3353 senones
(Section 4.1). The structure of this DNN is similar to that commonly
used in ASR [17] and contains 5 hidden layers, with the bottleneck
layer at position 4. The size of the bottleneck is set to 50, which was
better for this task than the more standard value of 80. The input
features to this DNN are given by 40-dimensional log mel filterbank
(LMFB) energies (the same ones used to compute the 20 cepstral
coefficients for the MFCC-GMM and MFCC-DNN systems above),
normalized by subtracting the median from each dimension within
a window of size 201 centered at each frame. This sliding-window
normalization worked better than a normalization performed over
the whole waveform. The features are concatenated over a window
of 15 frames for input to the senone DNN, as usually done for ASR
[18]. Finally, the BN features obtained from the first DNN are con-
catenated over a window of size W. As for the MFCC-DNN system,
we smooth the features over S frames and concatenate one out of S
frames to create a final feature vector of dimension 50x(1+(W-1)/S),
that is then used as input to the SAD DNN. As for the MFCC-DNN
baseline, we explore different values for W and S.

For all systems, we band-pass filtered the signals with lowest
energy given by 200 Hz and highest energy given by 3300 Hz be-
fore feature extraction. For the DNN-based baseline system, LMFB
features gave worse performance than the MFCCs, while for the pro-
posed system, LMFBs worked better than MFCCs as input to the first
stage. This is the reason for using different input features for each
system.
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4.4. Results

Table 1 shows the results for all three systems, with different contex-
tualization windows and the skipping step set to keep the dimension
of the input to the model similar across windows. We can see that the
DNN baseline system significantly outperforms the GMM baseline
system on both datasets for a context window of 31 frames. We also
find that, for the MFCC-DNN baseline, long contexts lead to signifi-
cant gains over the usual 31 frame window used in most of the recent
SAD papers [4, 6]. The optimal context length seems to be around
71 frames, with the longer context of 111 frames giving a small gain
on the seen channels and a small loss on unseen channels.

Finally, we can see that the proposed system leads to large gains
on the seen channel data of 35% on minimum DCF and 40% on ac-
tual DCF. On the other hand, the performance on unseen channels
is not significantly different from that of the baseline DNN system.
This indicates that more work is required to ensure a better gen-
eralization of the BN features on unseen conditions. The optimal
context length for this system is between 31 and 71 frames, with no
consistent gain obtained from a longer context. Note, though, that
the effective context for this system is, in fact, 15 frames longer than
the window size W, since the BN features already consider a context
of 15 frames in their computation.

Table 1. Min DCF (mDCF) and actual DCF (aDCF) for seen and unseen
channels for different baseline and proposed systems. The second column
(“W/S”) indicates the size of the contextualization window W and, for the
DNN approaches, the number of frames S used for smoothing and skipping
before concatenation. The third column shows the final dimension of the
concatenated feature vector input to the SAD DNN.

System W/S  Dim Seen Unseen
mDCF aDCF mDCF aDCF
MFCC-GMM 31/- 100 4.38 6.74 12.92 18.91
31/~ 620 2.48 4.10 11.99 16.70
MFCC-DNN 7172 720 241 3.30 11.28 14.34
109/3 740 2.30 3.18 12.23 14.77
3113 550 1.80 2.66 11.21 14.92
BN-DNN 71/7 550 1.48 1.88 11.83 14.72
111/11 550 1.55 1.93 11.72 14.22

5. CONCLUSIONS

We proposed a new approach to SAD composed of two stages. In
the first stage, a bottleneck DNN is trained to predict the senone pos-
teriors. The activations of the bottleneck layer are then used to cre-
ate features for a second DNN, trained to predict speech/non-speech
posteriors. We show that this approach leads to 35-40% relative
gains on channels seen during training with respect to a single-stage
DNN baseline with MFCC input features. For unseen channels, the
system performs comparable to the baseline, indicating that the sys-
tem might be safe to use on conditions different from those present
in the training data.

In the near future, we plan to explore different structures for the
bottleneck DNN, including convolutional neural networks. We will
also work on the issue of robustness to unseen channels, exploring
different normalization approaches for both the features input to the
DNN and the bottleneck features themselves. Finally, we will ex-
plore using fewer classes (for example, monophones) at the output
of the phonetic DNN. This might result in more robust models, less
sensitive to variations in the channel characteristics.
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