
ON THE IMPORTANCE OF EVENT DETECTION FOR ASR

David Haws, Dimitrios Dimitriadis, George Saon, Samuel Thomas, Michael Picheny

IBM T.J. Watson Research Center, Yorktown Heights, USA
{dhaws,dbdimitr,gsaon,sthomas,picheny}@us.ibm.com

ABSTRACT

The performance of modern large vocabulary continuous speech
recognition (LVCSR) systems is heavily affected by segment bound-
aries, proper speaker identification of the segments, as well as re-
moval of spurious data. We propose to use Long Short Term Mem-
ory (LSTM) recurrent neural networks to partition audio into speech
segments as well as track speaker turns. Additionally, we train an
LSTM to also identify music segments. We show that the accu-
rate detection of events, along with removal of silence and music,
using our LSTM yields a 9-10% relative improvement in ASR per-
formance. Secondary processing by speaker clustering provides an
additional boost in accuracy. Event detection accuracy of the LSTM
approach is also described.

Index Terms— Event Detection, Diarization, Automatic Speech
Recognition, Long Short Term Memory, Music Detection.

1. INTRODUCTION

State-of-the-art LVCSR systems convert audio files into correspond-
ing text taking under consideration different error sources, such as
speech spontaneity, speaker variability, training/testing mismatch,
limited resources of data for language modeling, etc. An unsu-
pervised speaker adapted module is considered a standard compo-
nent [1] for some of these systems, providing performance improve-
ments for repeating speakers within a single session. The motivation
behind this is to allow further improvements in recognition accuracy,
by further improving the speakers statistics and transforms [2]. This
type of meta-information, i.e. attributing audio segments to particu-
lar speakers and incrementally refining the speaker dependent trans-
forms, can be provided by the speaker diarization process [3].

The first step in diarization is event detection or segmentation as
it is widely known, where transitions from silence to speech or mu-
sic, speaker turns, and speech to music or silence are detected [4].
Then, speaker clustering is performed, where all speech segments
are assigned to specific speaker labels. Speaker clustering methods
can be divided into online and offline categories based on processing
requirements. For the case of online speaker clustering or speaker
tracking, the speech segments are assigned to speaker labels as soon
as the next change point is detected. It is suitable mainly for real-
time transcription systems as it allows speech segments with corre-
sponding speaker labels to be used for speech recognition with very
low latency. The output from online speaker diarization can then be
used for incremental speaker adaptation [5].

The baseline system for segmentation consists of two sequential
actions: first, a speech activity detector (SAD) is used to find the re-
gions of speech in the audio stream. The quality of the subsequent
tasks depends greatly on the precision of this first step, since the er-
rors will propagate. Therefore, an accurate SAD is crucial for the

ASR Input Structure SI SA
Automatic SAD 27.12 24.69

No spkr/gender, music in stats and decode 23.69 25.82
No spkr/gender, music in stats 23.69 25.12

No spkr/gender, no music 22.05 24.23
Gender info only, no music 22.05 20.14

Speaker info, no music in stats or decode 21.09 18.02

Table 1. A summary of word error rate for ASR performance un-
der varying levels of oracle information on internal IBM data which
contained multiple speakers, automated messages, and music.

successful deployment of any system. The system proposed here de-
tects and classifies the non-speech segments into different acoustic
classes such as silence, music and speech. The second step in base-
line systems is to perform speaker clustering to find homogeneous
segments.

The most popular criterion for speaker segmentation is the
Bayesian information criterion (BIC) [6, 7] derived from the Gen-
eralized Likelihood Ratio (GLR) [8]. The BIC criterion is used to
decide whether two models represent different data samples ade-
quately, while penalizing more complex models. This algorithm
searches for change points within a window using a penalized like-
lihood ratio test of whether the data in the window is better modeled
by a single distribution (no change point) or two different distribu-
tions (change point). The dissimilarity between the two neighbor-
ing analysis windows is estimated and thresholded. In BIC-based
speaker segmentation, the choice of the thresholds and the analysis
window lengths are quite important, making its performance very
sensitive to these parameters. This type of sensitivity along with the
increased computational complexity often makes the BIC algorithm
intractable.

Herein, we propose using an LSTM-based system first to seg-
ment the audio into speech segments and in parallel, track the
speaker turns. The LSTM recurrent neural network provides an
internal memory of the previous states, tracking changes easily.
Additionally we train an LSTM to also identify music segments and
evaluate its performance of ASR.

Accurate event detection coupled with speaker clustering can
dramatically improve ASR. As motivation, we performed a series
of ASR experiments on internal IBM telephony conversational data
where the level of oracle information was varied. (See Table 1). It
is clear that removing music, adding gender information, and finally
knowing full speaker information provides a clear advantage pro-
viding 22.2% and 30.2% relative improvement in Word Error Rate
(WER) for a Speaker Independent (SI) system a Speaker Adapted
(SA) system respectively.

The remainder of the paper is organized as follows: Section 2
describes the NNs and LSTMs used to train event detection models.
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Section 3 describes the speaker independent and speaker adapted
ASR systems. Section 4 describes how the LSTM and NN mod-
els were trained for event detection. Subsection 4.1 contains results
on event detection accuracy on the 2000 hour Switchboard (SWB)
holdout set. Subsection 4.2 then details a variation of our LSTM
model where music is added to the training data and a new ‘music’
label is added to the LSTM output targets. ASR accuracy using a
baseline SAD, BIC, are other semi-oracle approaches are compared
to the segmentation results of LSTM. Finally we conclude with a
discussion in Section 5.

2. NEURAL NETWORK FOR EVENT DETECTION

Deep Neural Networks (DNN) and Recurrent Neural Networks
(RNN) have been used successfully in speech recognition [9, 10,
11, 12, 13, 14]. Deep neural networks possess many well-known
advantages such as modeling flexibility and ability to capture low-
level characteristics in lower layers while modeling non-linearities at
higher levels. RNNs also are able to model complex non-linearities,
and they contain recurrent (cyclic) connections which make them
very adept at modeling sequence data compared to typical feed-
forward DNNs. Comparatively, DNNs can handle a limited amount
of temporal information via a fixed sliding window, whereas RNNs
have internal states which dynamically allows previous time-steps
to influence the current time step.

Long Short Term Memory (LSTM) neural networks were devel-
oped to overcome some modeling weaknesses in RNNs [15]. Ad-
ditionally, LSTM do not suffer from the vanishing gradient problem
which hinders RNNs [16]. LSTMs contain memory blocks which
itself contains memory cells with self-connections. The memory
cells store temporal information of the network and the network also
contains special gate units to control input or output of information.
Specifically the input gate controls input activation into the cell and
the output gate controls the output activation of the cell. The forget
gate [17] was added to LSTMs to address a problem with processing
continuous data not segmented into subsequences. The forget gate
allows for forgetting or resetting the memory cell’s internal state,
based on the input state, cell state, and previous output state. Lastly,
peephole connections were added to LSTMs which allow controlled
timing of output of the memory block [14]. For recent work on
LSTMs and acoustic modeling see [14, 18]. See Figure 1 for a
layout of the LSTM memory block.

We propose to use LSTMs in order to find events in audio
streams, such as changes from speaker to silence, speaker to speaker,
and silence to speaker. Additionally we train LSTM models to also
find music. The design of LSTMs allows for its internal memory
structure to potentially learn some previous context and use its inter-
nal cell states to assist in deciding the label of a current frame. This
is opposed to a simple NN which would have to decide at a current
frame (with some context) what label to predict.

3. SPEAKER INDEPENDENT VS. SPEAKER ADAPTED
ASR SYSTEMS

The ASR systems used for our experiments are similar to those de-
scribed in [19]. The acoustic modeling process starts with train-
ing of traditional HMM-GMM based acoustic models. The GMM
models are trained on 13 dimensional PLP features estimated in 25
ms windows of speech. The cepstral features from 9 consecutive
frames are then spliced after speaker based cepstral mean-variance
and vocal tract length normalizations (VTLN). An LDA transform
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Fig. 1. A Long Short Term Memory block. The symbols xt, ct, ht

are the values of the input, cell, and output at time t. The symbols
ft, it, jt, ot are the forget gate, input gate, cell input activation func-
tion, and the output gate. The cells new value is determined by the
addition of two values: the element-wise product � of the previous
cell state and the forget gate, and it � jt. The output is then deter-
mined by the element-wise product of the cell state and the output
gate. Lastly, the dashed lines show the cell peephole connections.

is applied to reduce the final feature dimensionality to 40. The ML
training of the GMM models is also interleaved with the estimation
of a global semi-tied covariance (STC) transform. Feature space
maximum likelihood regression (FMLLR) is finally applied to train
speaker adapted models. The training is done on close to 2000 hours
of telephone speech from various sources including the Switchboard,
Fisher and CallHome corpora.

The speaker adapted (SA) system in our experiments uses a
DNN and a convolutional neural network (CNN) acoustic model
combined at the score level. The DNN models are fully connected
multilayer perceptrons with several non-linear hidden layers that
are discriminatively trained to estimate posterior probabilities of
context-dependent states. Using the standard error back-propagation
and cross-entropy objective function, the DNNs are trained on
speaker adapted FMLLR features using alignments produced from
the HMM-GMM acoustic model described earlier. Extra speaker
information is integrated by using I-Vector features as well. These
features are generated as described in [20]. The DNNs are pre-
trained by growing them layer-wise to 7 hidden layers. Except for
the penultimate bottleneck (BN) layer with 512 units all the other
hidden layers have 2048 units.

The CNN use additional feature extracting layers based on 2-D
convolution before a DNN. We train CNN models on 40 dimensional
VTLN warped log-mel spectra augmented with ∆ and ∆∆s. Each
frame of speech is also appended with a context of ±5 frames. All
of the 128 nodes in the first feature extracting layer are attached with
9×9 filters while the second feature extracting layer with 256 nodes
has a similar set of 4×3 filters. The non-linear outputs from the sec-
ond feature extracting layer are then passed onto the following DNN
layers. Both the DNN and CNN predict scores for 32K context de-
pendent states, which are combined before being used for decoding.
Both the DNN and CNN models are also retrained with Hessian-free
sequence training as described in [21].

Unlike the speaker adapted system described above, the speaker
independent (SI) system uses only a single CNN based acoustic
model. The model uses an architecture similar to the SA-CNN
system described earlier. Instead of speaker compensated log-mel
spectra, the model uses log-mel features with utterance level nor-
malization. This model is also retrained with Hessian-free sequence
training after cross-entropy training.
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The off-the-shelf SAD used for our experiments was developed
for the DARPA RATS SAD program [22]. At the core of the detector
is an MLP trained on a combination of several acoustic features.
Speech and non-speech regions are determined by applying a Viterbi
decode on scores from the model as described in [22].

4. EXPERIMENTS

The experiments were performed on the 300 hour subset of the
Switchboard English conversational telephone speech (SWB) data
and tested on 2.4 hours of hand transcribed internal IBM telephony
data, containing multiple speakers per session, music, beeps/rings,
and automated messages. The SWB data was used for training,
and another 2000 hour holdout set was used to measure the speaker
turn accuracy. The IBM internal data was used for testing of the
ASR accuracy. Two approaches were investigated using the NNs to
output homogeneous segments.

First, features, i.e. PLPs with their time-derivatives and LDA,
were extracted from the training set, i.e. the SWB 300 hour data. For
each utterance, features were extracted and their mean and variance
were computed. Then the set of means and variances were clustered
using the k-Means and the Mahalanobis distance measure into either
12, 21, or 42 clusters. That is, each SWB utterance is assigned to
a cluster based on the aforementioned features. The assumption is
that every cluster roughly represents a group of speakers. Various
NN and LSTM architectures were, then, trained on these features,
using the assigned labels per frame, i.e. the k-means cluster ID for
its corresponding utterance, or silence (determined by the existing
alignment).

The second and simpler approach is based on training the NN
or LSTM on SWB 300 hours, where the label at each frame was ei-
ther: 0 if the frame corresponded to the first speaker in the sentence,
1 if the frame corresponded to the second speaker in the sentence,
or 2 for silence (determined by an existing alignment). Although
the assignment of speaker 1 and speaker 2 is arbitrary, this was in-
tentional, enabling the LSTM to rely on its dynamic ability to store
information over time to determine speaker turns.

An ergodic HMM was used taking as input the DNN or LSTM
posteriors, in order to smoothen the temporal trajectories. Each state
(speaker cluster or speaker 0/1, and silence) corresponds to a chain
of five nodes on the finite-state machine, thus forcing at least five
consecutive similar states.

4.1. Event Detection & Classification

The event detection accuracy was measured on the held-out SWB
2000 hour set. Each SWB sentence was scanned left-to-right for
speaker segments of length > 1.0 secs. In the case where another
segment from a different speaker within 0.25 secs was found, it was
considered as an event. The hypothesis given by the NN or LSTM
were scanned for a change of segment types within 0.125 sec of the
event, and marked as a true positive if found. False positives are
ambiguous to measure and thus the number of segments-per-second
were reported as a close analogy, which is also an important measure
with respect to ASR since segment granularity can harm accuracy.

Surprisingly, an LSTM with a single layer and only 32 hidden
nodes performed the best yielding nearly 94% accuracy while pro-
ducing approximately 0.67 segments per second. A 3-layer 1024
hidden node NN trained on the simple {0, 1, 2} labels performed
nearly as well as the LSTM. The baseline system, based on BIC [6,
7], was also tested and found to perform similarly to the NN. On the
contrary, a 3-layer 1024 hidden node NN trained on 21 cluster IDs
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Fig. 2. ROC plots showing accuracy of event detection on SWB
2000hour data using various NN and LSTM event detection models.

performed the worst achieving 75% accuracy at the cost of nearly
three times as many segments per second. 1

4.2. ASR Accuracy & Music

Sixteen hours of music were added to the 300 hour SWB training
data, a fourth label was used to specify music, and LSTMs were
trained as before. The LSTMs where then used to find segments as
well as remove music and silence on internal IBM telephony data
consisting of 2.43 hours of conversational audio. Table 2 shows the
classification of the LSTM hypothesis (first three rows) as well as
how the reference (truth) were assigned by the LSTM. Interestingly
the LSTM sometimes confuses music or silence and vice-versa.
However, this does not present a problem as those are the two seg-
ments to be removed before ASR. The LSTM finds the majority of
music, although it does mistake some speech for music and misses
some music.

In Table 3 ASR performance was tested on IBM internal data us-
ing the output from the LSTM speech/silence/music segmenter, the
LSTM segmenter output coupled with speaker clustering, as well
as other insightful semi-oracle tests. Speaker clustering was per-
formed using the methods described in [23]. Using the results of
the LSTM directly leads to a 12.3% and 9% relative improvement
in WER for the SI and SA systems respectively. Speaker clustering
can improve this slightly in the SA system (SI system only estimates
stats per utterance, and thus cannot benefit from speaker labeling).
As a comparison, a simple SAD, even coupled with the speaker clus-
tering does not perform as well as the LSTM (even without speaker
clustering). Similar results hold for a simple SAD combined with
the ubiquitous BIC. To assess the source of the difference of the
WER for LSTM compared to the manual (best) two oracle tests

1Many NN and LSTM structures were also trained and tested. NN struc-
tures were either 1 or 3 layers with 32 or 1024 hidden units per layer. LSTMs
were 1 or 3 layers with either 32, 64, 128, or 512 hidden units.
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Music Silence Speech
Hyp Music 49.8% 23.3% 26.9%

Hyp Silence 2.7% 92.7% 4.5%
Hyp Music&Silence 22.8% 63.0% 14.1%

Ref Music 70.4% 5.1% 24.5%
Ref Silence 15.2% 80.7% 4.1%

Ref Music&Silence 32.8% 56.6% 10.6%

Table 2. Classification accuracy of hypothesis Music, Silence,
Speech labels as well as the distribution of the reference(truth) into
hypothesis labels. E.g. the LSTM Music hypothesis covered 49.8%
actual music, 23.3% actual silence, and 26.9% actual speech. Con-
versely, reference(true) music was assigned by the LSTM to be
70.4% music, 5.1% silence, and 24.5% speech.

ASR Input Structure SI SA
SAD 26.60 25.90

SAD + Spk. Clust. (2 spk) 26.60 24.28
SAD + Spk. Clust. (3 spk) 26.60 24.05

SAD + BIC 26.82 26.14
SAD + BIC + Spk. Clust. (2 spk) 26.82 24.05
SAD + BIC + Spk. Clust. (3 spk) 26.82 24.19

SAD (no music decode) 25.60 25.62
LSTM 23.78 23.49

LSTM + Spk. Cluster. 23.78 23.27
LSTM‡(music removed) 22.56 23.44

LSTM‡+ Spk. Clust. (3 spk) 22.56 22.47
LSTM‡+ Spk. Clust. (2 spk) 22.56 20.02

Oracle Segm. + Spk. Clust. (2 spk) 21.34 19.81
Oracle Segm. + Spk. Clust. (3 spk) 21.34 18.94

Manual (best) 21.34 18.02

Table 3. A summary of word error rate for ASR performance on
internal IBM data. Data was processed with standard energy based
SAD (SAD), BIC, manually in various configurations, or through
the LSTM segmenter. †All stats conversation based. ‡LSTM with
remaining music manually removed.

were performed. First, the remaining music was removed from the
LSTM output and WER was evaluated leading to a 1−3% improve-
ment. This implies the remaining music still poses some problems
for ASR. To assess the effect of the segment size and boundaries, the
ground truth segments were used and speaker clustering was per-
formed. These two tests showed that the LSTM based segmentation
causes a 1.2% degradation and the speaker clustering module intro-
duces approximately 1% degradation.

5. DISCUSSION

In this paper we demonstrated that the accuracy of ASR systems can
be improved by: 1) accurate event detection and speaker segmenta-
tion, 2) removal of spurious data such as music. Additionally, pass-
ing accurate speaker segments through an online or offline speaker
clustering procedure further improves ASR accuracy. To accomplish
speaker segmentation we showed that an LSTM can be trained to ac-
curately find events in continuous speech and can be adapted to also
remove the majority of music present in audio streams. For future
work we propose to improve the LSTM models accuracy in detect-
ing music through changes in the network structure and the use of
alternate features.
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