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ABSTRACT

Voice activity detection (VAD) is an important step for real-world
automatic speech recognition (ASR) systems. Deep learning ap-
proaches, such as DNN, RNN or CNN, have been widely used in
model-based VAD. Although they have achieved success in prac-
tice, they are developed on different VAD tasks separately. Whilst
VAD performance under noisy conditions, especially with unseen
noise or very low SNR, are of great interest, there has no robustness
comparison of different deep learning approaches so far. In this pa-
per, to learn the robustness property, VAD models based on DNN,
LSTM and CNN are thoroughly compared at both frame and seg-
ment level under various noisy conditions on Aurora 4, a commonly
used speech corpus with rich noises. To improve the robustness of
deep learning based VAD models, a new noise-aware training (NAT)
approach is also proposed. Experiments show that LSTM-based
VAD is most robust but the performance degrades dramatically in
the conditions with unseen noise or diverse SNR. By incorporating
NAT, significant performance gains can be obtained in these condi-
tions.

Index Terms— VAD, Deep learning, Robustness

1. INTRODUCTION

Voice activity detection (VAD) is a technique used in speech process-
ing in which the presence or absence of human speech is detected.
It is broadly applied to various speech applications such as auto-
matic speech recognition (ASR), speech synthesis, speech coding
and speech enhancement. It can directly influence the performance
of these applications.

A number of techniques have been proposed for VAD, including
both unsupervised systems mostly based on energy[1], zero cross-
ing rate[2], the periodicity measure[3], higher-order statistics in LPC
residual domain[4] and supervised systems, including support vec-
tor machines[5], Gaussian mixture models (GMM)[6], deep neural
networks (DNN)[7, 8]. In a clean signal, or one that has high signal-
to-noise ratio (SNR), the VAD problem can be solved directly us-
ing methods mentioned above. However, when the signal is cor-
rupted by noise, it is difficult to distinguish between speech and
non-speech. Researchers traditionally paid much attention to ex-
ploring new complicated acoustic features that are more discrimi-
native, and used some specific approaches to handle various noisy
conditions[9, 10, 11].
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More recently, deep learning approaches attract great research
interest due to its success in speech recognition. DNN-based VAD
system can fuse the advantages of multiple features much better than
traditional VADs. Recurrent neural networks (RNN)[12] and long
short-term memory (LSTM) recurrent neural networks[13] have
also been adopted for the reason that such kind of models model
long range dependencies between the inputs and improve the robust-
ness in real-life applications. Besides, convolutional neural network
(CNN) is also applied to VAD[14, 15], since CNN can generate
stronger feature vectors that are more invariant to input distortion
and position and is easier to train due to parameter sharing[16].

However, each of these deep learning approaches is usually
proposed aiming at some specific noise conditions and was exper-
imented on different data sets. Although all of these deep learning
methods have achieved desirable performance, the lack of thorough
comparisons and analysis between them makes people still unaware
of the advantages and disadvantages among these deep learning ap-
proaches on VAD task, especially under unseen noisy environment
and low SNR conditions. In this paper, we investigate and analyse
the noise robustness of VAD systems based on DNN, LSTM and
CNN at both frame and segment level under various noisy condi-
tions on Aurora 4, a commonly used speech corpus with rich noises.
In addition, the clean speech in Aurora 4 is also used to manually
mix with multiple unseen noise types at lower SNR. To improve the
robustness of deep learning based VAD models, noise-aware train-
ing (NAT) is also proposed. NAT can be considered as model-space
noise-adaptive training, using information about the environmental
distortion during network training. Through a series of experiments
on the Aurora 4 task, we show that the LSTM-based VAD system
has remarkable noise robustness. By using NAT proposed in this
paper, performance is further improved.

The remainder of this paper is organized as follow: in section 2,
we first briefly discuss the traditional DNN-based, LSTM-based and
CNN-based VAD algorithms. In section 3, the noise-aware training
approach is proposed. Experimental results and analysis are pro-
vided in section 4. Finally section 5 concludes the whole paper.

2. DEEP LEARNING APPROACHES FOR VAD

2.1. DNN-based VAD system

As has been demonstrated in [7, 8], DNN-based VAD not only out-
performs numerous other model-based VAD algorithms, but has a
low detection complexity. This section introduces the VAD system
based on a frame-based DNN classifier. DNN is used to classify an
acoustic observation x into one of a set of classes. In VAD problem,
a two-class classifier is used, which consists of a speech class and
a silence class. The input vector of the DNN, which is constructed
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for every frame of the input signal, is simply an extended context
window of the input observation.

ot = [xt−r, ...,xt−1,xt,xt+1, ...,xt+r] (1)

where xt is the feature vector of the tth frame, r denotes the length
of context extension. Frame-based classification is performed by
a comparison among posterior probabilities of the two classes for
each frame. DNN is optimized using the cross-entropy criterion by
stochastic gradient descent algorithm.

2.2. LSTM-based VAD system

Paper [13] presented a VAD approach based on LSTM RNN, which
takes advantage of its ability to model long range dependencies be-
tween the inputs. The LSTM contains special units called memory
blocks. Each memory block contains an input gate, an output gate
and a forget gate. A memory block can be regarded as a complex and
smart network unit capable of memorizing information for a long du-
ration of time.

An LSTM network computes a mapping from an input sequence
x = [x1, ...,xT ] to an output sequence y = [y1, ...,yT ] by calcu-
lating the network unit activations iteratively from t = 1 to T . More
details about this architecture and training can be found in [17, 18]

When it comes to VAD problems, the input vector of the LSTM,
similar to DNN, is an extended context window of the input obser-
vation. Posterior probabilities of silence class and speech class are
computed for each input vector respectively. Cross-entropy is used
as the optimization criterion and is minimized using the truncated
back propagation through time (BPTT) learning algorithm.

2.3. CNN-based VAD system

A convolutional neural network (CNN) is composed of several con-
volution layers and fully-connected layers. Input maps are fed into
convolution layers, which are composed of convolution sub-parts
and optional pooling sub-parts [16]. Each convolution sub-part per-
forms the operation of convolution with many 2-D filters. For each
hidden map in convolution layer, all the inputs share one filter, which
reduces the complexity of the entire network greatly. The pooling
layers are quite simple. It is only a sampling using operation like
maximum or average to reduce the dimension of data. And such
structure has been proved great performance over DNN in many
fields [19, 20].

A basic CNN-based VAD system has been proposed in [14, 15].
Two 2-dimension maps, representing filter-bank and first order
derivative features of one frame, are fed into CNN. Also, features
of each frame have been extended across time like equation (1),
so that time and frequency are the two dimensions of input maps.
This ensures the capacity of CNN to obtain the topology informa-
tion and train time sequences properly. The objective function is
cross-entropy and is minimized using back propagation[21], which
is performed by stochastic gradient descent.

The above three deep learning approaches have been success-
fully applied on VAD task. However, they were proposed with some
specific noisy environment and the used corpora were different.
DNN as proposed in [8] was tested on Aurora 2 data set; Paper [13]
reported the remarkable performance of LSTM based on Buckeye
and TIMIT corpus and was also applied to Hollywood movie audio
tracks; In paper [14, 15] IBM proposed and tested CNN-based sys-
tem mainly on RATS data. Until now, no comparative study between

these deep learning approaches on the same corpus has been done to
investigate the robustness under noisy conditions.

3. NOISE-AWARE TRAINING FOR NEURAL NETWORKS

Researchers have attempted to add some noise information to the in-
put of DNN in ASR systems and achieved some improvements[22].
Inspired by this, NAT-based VAD is proposed here. The noise in-
formation of each utterance is not specifically utilized in the basic
structured neural network framework described above. To actual-
ize this noise awareness, the network is fed with the noisy speech
features augmented with extra estimated information about current
environment conditions.

In this work, not only noise but also noisy speech information
is taken into consideration. Thus, the network’s input vector ot is
modified to an extended context window appended with noise code
and noisy speech code:

ot = [xt−r, ...,xt−1,xt,xt+1, ...,xt+r,n, s] (2)

where n and s are the appended noise code and speech code re-
spectively and are fixed for the entire utterance as environment is
assumed to remain the same for each utterance. To simplified the
problem in this work, the average of filterbank features of silence
frames is used as n and the average over speech frames is used as s.

n =

∑
t∈Tsil

xt

|Tsil|
, s =

∑
t∈Tspch

xt

|Tspch|
(3)

where Tsil and Tspch denote silence frames set and speech frames
set of an utterance, which can directly obtained from the VAD label
during training. When testing, the non-NAT VAD system is used
as an assistance to get a preliminary classification. Based on those
frames which have higher posterior probabilities, n and s can be
calculated respectively.

4. EXPERIMENTAL COMPARISONS ON ROBUSTNESS

In this section, experiments were conducted on Aurora 4[23]. There
are three sets of training data, each comprising 7138 utterances from
83 speakers. Multi-noise training set was used in this paper. One
half of Aurora 4 is recorded by the primary Sennheiser microphone
and the rest is recorded by different secondary microphones. Both
halves include a combination of clean speech and speech corrupted
by one of six different noises (street traffic, train station, car, babble,
restaurant, airport) at 10-20 dB SNR. The evaluation was performed
using Wall Street (WSJ0)[24] test set. This test set is recorded in
the same two channels as training set and corrupted by the same
six noises at 5-15 dB SNR, creating a total of 14 test sets. Notice
that the types of noise are common across training and test set but
SNRs are not. These 14 test sets can be grouped into 4 subsets:
clean, noisy, clean with channel distortion, and noisy with channel
distortion, which are indicated as A, B, C and D respectively.

In addition, a more realistic scenario is set up with many unseen
noise types compared to the Aurora 4, which is more similar to the
real-world application. The new noisy speech data was synthesized
based on clean and clean with channel distortion test sets in Aurora
4, and 100 noise types1 were randomly selected and added to the
clean speech manually at different random SNRs from 5 to 15 dB.
The two test sets are indicated as SEN and 2ND respectively.

1Source: http://web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/
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To further compare the performances of each deep learning ap-
proach when the signal is severely corrupted by noise, we chose the
same kinds of noise as previous test sets, including seen noise types
and unseen types, to mix with the same clean speech corpus at two
SNR levels: -5, 0dB, thus generating 4 new test sets. SEEN is used
to denote those test sets in which the noise condition is seen in the
training data and UNSEEN represents those absent noise conditions.
The integration of these 4 sets is indicated as LOWSNR.

The basic feature used for all neural networks was 24-dimensional
log mel filterbank and first order derivative features. In order to di-
rectly compare the performances of DNN, LSTM and CNN, the
amount of parameters of each neural network was fixed to almost
the same. In all following experiments, the input layers were formed
from a context window of 11 frames creating an input layer of 528
visible units. The hidden layer structure of DNN was 437[units]
×4[layers] while it was 256[LSTM blocks] × 1[layer] for LSTM.
For CNN, the entire network layer is 2[24×11 input maps], 64[7×2-
filter and 2×2-pooling maps], and 3 fully-connected layers of 64,
545, 256 units, respectively. A final layer of 2 units included speech
and silence class. By such configuration, the numbers of parameters
of DNN, LSTM and CNN are 804517, 804096, and 804288, respec-
tively. That means the parameters of DNN is nearly equal to CNN’s
and LSTM’s.

4.1. Frame-level Evaluation

Notice that no post-processing was adopted here to directly compare
the modelling abilities of DNN, LSTN and CNN. The area-under-
ROC-curve (AUC)[25] and equal error rate (EER) were used as the
evaluation metric. Because over 70% frames are speech, we did not
use the detection accuracy as the evaluation metric, so as to prevent
reporting misleading results caused by class imbalance. The results
are listed in Table 1. It can be found that LSTM model has the best
performance on frame-based classification in all test sets and CNN
performs worse than other two models, although the gaps between
these models are very small.

Table 1. AUC and EER (%) comparison between deep learning ap-
proaches.

Metric System A B C D AVG

AUC
DNN 99.86 98.87 99.64 97.46 98.45

LSTM 99.89 99.49 99.72 98.72 99.19
CNN 99.83 98.36 99.68 97.06 98.10

EER
DNN 1.29 4.47 2.23 7.62 5.56

LSTM 1.10 2.88 1.94 5.01 3.79
CNN 1.50 5.71 1.97 8.35 6.47

Table 2. AUC and EER (%) comparison under unseen noise condi-
tions.

Metric System SEN 2ND AVG

AUC
DNN 85.21 88.90 86.80

LSTM 93.63 94.22 93.64
CNN 92.82 91.17 91.78

EER
DNN 16.11 14.67 15.51

LSTM 10.55 10.82 11.09
CNN 11.62 14.39 13.32

Since all the three deep learning models perform excellent un-
der seen noisy conditions, we want to investigate their generalization
abilities under unseen environment and noisier conditions. Experi-
ments were conducted on SEN, 2ND, SEEN and UNSEEN. The re-
sults are illustrated in Table 2 and Table 3. Compared with LSTM

Table 3. AUC and EER (%) comparison under noisier conditions.

Metric Test set SEEN UNSEEN AVGSNR 0db -5db 0db -5db

AUC
DNN 55.15 43.54 74.53 64.71 59.48

LSTM 81.90 70.45 81.25 71.91 76.37
CNN 69.49 59.55 69.28 63.37 65.42

EER
DNN 36.00 41.15 24.05 29.45 32.61

LSTM 21.37 28.05 20.73 26.15 24.08
CNN 29.44 34.86 27.68 31.26 30.81

and CNN, DNN shows a poor generalization ability and performs
terrible under low SNR. Since CNN can generate stronger feature
vectors that are more invariant to input distortion and position, it ob-
tains better performance under unseen noisy conditions. When SNR
is low, CNN performs better than DNN under seen noise but worse
under unseen noise types. This is likely because of the mismatches
in the feature transforms, especially those in the feature extracting
layers of CNN. LSTM consistently has the best performance due to
its strong ability to model long range dependencies between inputs.

4.2. Segment-level Evaluation

AUC and EER are only indications of frame classification ability.
In this section, we want to further investigate the specific advan-
tages of each deep learning model from other segment-level aspects
which are of importance for VAD task. To do so, another evaluation
metric JV AD[26] is introduced here. JV AD evaluates four differ-
ent aspects, namely start boundary accuracy (SBA), end boundary
accuracy (EBA), border precision (BP) and frame accuracy (ACC).
ACC is the basic percentage of correctly recognized frames. For the
start boundary sr of utterance r, calculate a start boundary score J r

S

based on the interval [sr − L, sr + L] if there exists a speech start
boundary in VAD output matching it (allowing a plus or minus error
margin L) following

J r
S =

∑
i∈[sr−L,sr+L] f(i− sr)δ(c

(i), c
(i)
ref)∑

i∈[sr−L,sr+L] fs(i− sr)
(4)

where c(i) is the VAD output of the ith frame and c(i)ref is the corre-
sponding label. δ(·) is the Kronecker-δ function. f(·) is a weight-
ing function to give a heavier weight to the frames in speech period
since they usually lead to more serious speech recognition error if
misclassified. Therefore SBA is defined as the average of J r

S over
all utterances. It is similar for EBA. Thus, SBA and EBA are indi-
cations of boundary-level accuracy, based on which border precision
can be defined as

JB =
R

2M
(JS + JE) (5)

where M indicates the number of speech segments in VAD output
and R denotes the number of speech segments in VAD label. Low
border precision indicates that an algorithm returned substantially
more incorrect borders than correct ones, which means the VAD out-
put is more fragile. Therefore, JB is a measure of the integrity of
the VAD output segments. The harmonic mean of above four sub-
criteria is defined as JV AD . Analysis is conducted from these 4
aspects. The details are shown in Fig. 1.

ACC shows the consistent results as AUC and EER. If focusing
on test A, B, C and D, we can find DNN performs slightly better than
LSTM and CNN around boundaries. However BP of DNN is much
worse than LSTM and CNN. That means there are a lot of false tran-
sitions between speech and non-speech in DNN output. Therefore
many false alarms from non-speech periods and deletion errors from
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Fig. 1. Segment-level evaluation of DNN, LSTM and CNN based
VAD.
speech segments may occur. The reason why DNN has the worst
BP in all test sets can be attributed to the fact that LSTM and CNN
have the better ability to capture time-series dependence between
the inputs, which help reduce false transitions between speech and
non-speech. When it comes to unseen noisy scenarios and low SNR
conditions, LSTM consistently performs the best on both boundary
accuracy and BP. DNN performs slightly better than CNN around
boundaries while BP of CNN is much better than DNN. When SNR
degrades to very low levels, although CNN retains its relative higher
BP, the boundaries accuracy degrades severely as well. In fact, CNN
tended to recognize all frames as speech when SNR degrades lower
than 0db. Too much extension of speech boundaries made bound-
aries accuracy extremely low. In sum, under the same amount of pa-
rameters, DNN performs better around boundaries on matched test
sets, but contains too much false transitions. Although CNN has
a better generalization ability under unseen noisy conditions, it is
not a stable system when signal is severely corrupted by noise. On
the other hand, LSTM is the best frame-based classifier, which has
stronger modelling and generalization ability.

4.3. Comparison After Post-processing

Since the nature of VAD is different from normal binary classifi-
cation problems, it is important to apply post-processing to smooth
the raw output and reduce false transitions due to weak speech tails
or abrupt noise presence. Therefore, performances of different VAD
systems were compared after applying post-processing. Specifically,
two distinct post-processing stages are applied. In the first stage, pre-
liminary decisions made by the system are smoothed using a running
window in order to reduce short term variations. In the second stage,
we merge the small segments with very short durations.

Table 4. Performance of VAD after post-processing.
Metric Model A+B+C+D SEN+2ND LOWSNR

EER
DNN 3.52 11.19 29.31

LSTM 3.15 9.24 23.64
CNN 5.05 9.76 28.36

JV AD

DNN 84.66 48.68 20.80
LSTM 83.80 65.39 41.47
CNN 82.28 55.23 14.43

Considering that post-processing based on flawed preliminary

classifications when choosing some extreme thresholds may lead to
more errors, AUC might not be reliable. Therefore, EER and JV AD

are used as the evaluation metrics here. From the table, it shows
that LSTM obtains the best performance on most test sets after post-
processing. As is discussed before, the weakness of DNN lies in the
frequent false transitions. Since post-processing is specially used
to address this error and DNN detects boundaries more accurately,
DNN gains more improvement than LSTM and CNN and obtains
the best JV AD on matched test sets. As for the unseen scenarios,
CNN consistently outperforms DNN, which means CNN has advan-
tage in dealing with unseen noise distortion. When SNR degrades to
low level, CNN fails to detect correct boundary, thus making JV AD

lower than DNN, although it has better EER.

4.4. Effect of Noise-aware Training

To evaluate the proposed technique designed to increase the noise
robustness of these systems, noise-aware training was adopted on
all systems. CNN, due to its special input format, needs a differ-
ent noise-aware training method. The noise code and speech code
should be appended on the first fully-connected layer of CNN, rather
than input maps. The estimation of noise and noisy speech was
computed simply by averaging the static input features over silence
frames and speech frames separately and fixed for the entire utter-
ance. The dimensions of the NAT features are 24. We compared
DNN-based, LSTM-based and CNN-based NAT system and the re-
sults are listed in Table 5.

Table 5. Performance of NAT-based VAD systems.
Metric Model A+B+C+D SEN+2ND LOWSNR

EER
DNN-NAT 3.14 8.58 28.74

LSTM-NAT 2.82 6.72 16.86
CNN-NAT 3.30 7.14 21.22

JV AD

DNN-NAT 85.82 64.10 35.90
LSTM-NAT 85.52 72.04 51.56
CNN-NAT 84.74 70.21 38.11

Compared with Table 4, all the three systems achieve signifi-
cant improvement on all test sets after adopting noise-aware training
method. DNN with noise-aware training achieves a level of per-
formance equivalent to or better than LSTM. For CNN, noise-aware
training dramatically remedies the disadvantages of CNN when SNR
degrades to lower than 0db, and CNN achieves better performance
on all test sets. LSTM-NAT consistently obtains the best overall
performance. Therefore, the proposed NAT is an effective method
to further improve VAD performance especially under noisy condi-
tions, although it introduces another detection pass.

5. CONCLUSION

In this paper, VAD systems based on different deep learning ap-
proaches, DNN, LSTM and CNN are thoroughly compared from the
robustness aspect. Through a series of experiments on Aurora4, it
is demonstrated that LSTM is more robust than CNN and DNN un-
der various circumstances. Although all deep learning approaches
performed well under noise-matched conditions, very large perfor-
mance degradations were observed in conditions with unseen noise
or very low SNR for all approaches. To address this issue, noise
aware training (NAT) is proposed in this paper. Experiments showed
that with NAT, significant performance gains can be achieved for all
deep learning approaches under unseen noise or very low SNR con-
ditions. We observed the same conclusion on real-world noisy data
but the results are not listed due to the limited space in this paper.
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