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ABSTRACT

Monaural (single-channel) recording is sometimes used for
telephone conversations in call centers. Generally speaking,
the accuracy of automatic speech recognition of a monaural
recording is worse than that of the multi-channel recording
of the same conversation where each speaker’s voice is
separately recorded. The major reason is that the recognition
system fails not only at the overlapping segments where
the voices of the multiple speakers overlap, but also at the
neighboring segments surrounding the overlapping segments.
In this paper, we tackle this problem by using a combination
of garbage modeling and noise-robust monaural acoustic
modeling. Our proposed method trains the models by making
use of multi-channel recordings and transcripts, which are
relatively easy to prepare than monaural recordings and
transcripts.  We present experimental results where the
proposed methods reduced the error rates by approximately
3% relative to the baseline methods for both of GMM-HMM
and CNN-HMM cases. Because the proposed method is quite
simple, the proposed method is easy to deploy to wide range
of ASR systems for monaural speech transcription.

Index Terms— Overlap, Monaural speech, Garbage
model, Noise robust, Telephone conversation

1. INTRODUCTION

Recent study in the field of automatic speech recognition
(ASR) has greatly improved the recognition accuracy
for transcribing naturally spoken utterances.  However,
because voices of the multiple speakers participating in the
conversation often overlap and because there are application
scenarios where only a single microphone can be used, it
is often the case that overlapping segments degrade the
recognition accuracy and spoil the value of the application [1,
2]. A common application area where monaural recordings
are sometimes used is recording of telephone conversation
in call centers to reduce the size of the stored data. As
another example, recordings of conversations in meetings
or at sales counters made by using a single microphone
inevitably include overlapping segments.

The ASR accuracies of these monaural recordings with
overlapping segments are generally worse than with multi-
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channel recordings where each speaker’s voice is recorded
separately. The overlapping segments cause burst errors not
only in the overlapping segments but also in their neighboring
segments because the decoding process of ASR propagates
errors to surrounding segments.

In this paper, we address this problem by combining
garbage modeling [3, 4, 5, 6] and noise-robust acoustic
modeling [7, 8]. Overlapping occurs when two or more
speakers speak simultaneously. If the power of the voices
is about the same, it is very difficult to recognize any one
of the voices. In this case, our garbage modeling handles
the overlapping segments. This may result in some deletion
errors in the overlapping segments, but successful removal
of the burst errors of insertions and substitutions can lead to
overall error rate reduction. Contrarily, if the power of the
voice of one of the speakers is dominant, the dominant voice
can be recognized, ignoring the other voices as overlapping
background noise. To build a noise-robust acoustic model,
we use training data including overlapping speech noise in
which one of the voices has a dominant power.

Training of a monaural acoustic model usually requires
monaural recordings and transcripts with labels of
overlapping speech segments. However, it is quite costly
to prepare transcripts that contain overlapping segments,
which make labeling work even more difficult. To avoid
this problem, we generate simulated monaural recordings
and transcripts from multi-channel recordings and transcripts,
which are relatively easy to obtain.

Our contributions in this study are three-fold. First, we
tackled accuracy degradation problems caused by overlapping
speech segments in monaural recordings of telephone
conversations. As far as we know, this is the first work to
tackle this problem. Second, we combined garbage modeling
and noise-robust acoustic modeling to handle two types of
speech overlapping segments: those where the power is about
the same and those where it is not. Third, we proposed a
method for making monaural recordings and transcripts from
multi-channel recordings and transcripts. Thanks to this,
we do not need to manually prepare transcripts of monaural
recordings.
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2. PROPOSED METHOD

2.1. Overall flow of model training

Fig. 1 shows an overall flow chart of the model training
process of the proposed method. Although we can handle
three or more speakers, we consider only two speakers here,
which is usually true for telephone conversations.

By simply adding L- and R-channel recordings, we can
make simulated monaural recordings. With the single channel
recording and transcript of each of the L and R channels,
we can do forced alignment to get transcripts with time
stamps. Then, we generate transcripts of the simulated
monaural recordings by concatenating the transcripts of the
two channels along with the time axis and by replacing the
words in the overlapping segments with labels of speech
overlapping. Finally, we build an acoustic model (AM) and
language model (LM) by using the monaural data.

Our dictionary includes a special “overlap-word” (OLW).
Our phoneme set includes a special “overlap-phone” (OLP)
and an entry in the pronunciation dictionary for OLW is set
to OLP. The following sections describe the details of the
building process of the proposed AM and LM including OLP
and OLW, respectively.

2.2. AM

“Transcripts for AM” in Fig. 2 shows an example of
generated transcripts for AM training. An overlapping
segment of “right”/“uh-huh” is replaced with “right”, which
has a dominant power, and an overlapping segments of
“wait”/“order” is replaced with an OLW, where the powers
of two voices are about the same. Concretely speaking,
we calculated the SNR for each overlapping segment by
regarding the speech having the larger power as the signal,
and if and only if the SNR is higher than a threshold, we
regard the segment as dominant speech with background

noise.

An AM of an OLP trained by using OLW segments can
handles overlapping speech, where the powers of the voices
of the speakers are about the same. However, AMs of the
other phonemes trained by using this data are robust against
overlapping speech background noise in which one of the
voices has a dominant power because the training data include
the same type of noise. The garbage modeling and the noise-
robust AM are complementary, and a combined model can
handle the two types of speech overlapping.

23. LM

“Transcripts for LM” in Fig. 2 shows an example of generated
transcripts for LM training. Both overlapping segments of
“right”/“uh-huh” and “wait”/“order” are replaced with OLW
in this example. By replacing all overlapping segments, we
can gather as many word contexts for overlapping segments
as possible.

Although word context information for OLW is useful
for garbage modeling, it is effective to assign a smaller
probability to the OLW in the LM to reduce false alarm
errors because false rejection of OLW does not affect ASR
results but false alarm of OLW increases deletion errors. To
adjust the probability of the OLW without loss of context
information, we interpolate the LM and a normal LM that
does not include OLW. The normal LM is trained by using
transcripts of multi-channel recordings. The interpolation
weight can be used as a tuning parameter to balance false
alarm and false reject errors.

2.4. Decoding

We decode the test data by using the proposed noise-robust
AM and LM with garbage model. We discard any OLW
decoded by the system. After identifying the overlapping
segments by using the proposed method, instead of removing
the OLW, it would also be possible to introduce more
advanced methods to recognize the segments, but this is future
work and we only removed overlapping segments in this
work.

3. EXPERIMENTS

3.1. Experimental conditions

We conducted Japanese monaural telephone conversation
ASR by using in-house data. These conversations were
between agents and customers. All of the speech was
recorded at 8 kHz with 16 bit sampling. We used a voice
activity detection (VAD) system to extract speech segments
of the data in advance. The test data was 1 hour of manually
transcribed monaural recordings. The training data was 150
hours of two-channel data and transcripts. We call this “data
A”. Some parts of data A are two-channel data, but only the
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Fig. 2. Examples of generation process of monaural scripts with OLW from two-channel data

agent-side data exist. We were able to artificially generate
30 hours of simulated monaural recordings with artificial
transcripts with OLW from data A where both the agent-side
and caller-side data exist. We call this “data B”. 12% of the
data B are overlap segments according to the VAD results on
two-channel data.
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Fig. 3. Training recipe of AMs

We used the AM recipe of Fig. 3. Data A was used for
baseline AMs. Both data A and data B were used for proposed
AMs. The threshold to regard one speaker as dominant in
data B was set to 10 dB (See Section 2.2). The GMM-HMM
with garbage model was made by combining the baseline
GMM-HMM and the GMM of OLP. This GMM for OLP
was trained with speech segments aligned to OLW in data B.
We re-trained the GMM-HMM by using data A and data B
to create the noise-robust GMM-HMM with garbage model.
Then, using the GMM-HMM, we did forced alignment for
data A and data B. We used this data to train the noise-robust
convolutional neural network (CNN)-HMM [9, 10, 11] with
garbage model.

For the GMM-HMM, we used 4,500 HMM states and
150,000 Gaussians. For the OLP, 1 HMM state and 100
Gaussians were added. The HMM states were clustered by
using a phonetic decision tree of quinphones while the OLP
was regarded as monophone. The features were derived from
13-dimension perceptual linear prediction (PLP) features.
The acoustic context was taken into account by splicing
9 adjacent frames of mean- and variance-normalized PLP
features and then projecting into a 40-dimension feature
space by using linear discriminant analysis (LDA), followed

by global semi-tied covariance (STC). Feature space and
model space boosted maximum mutual information (bMMI)
training was used to train the GMM-HMM. At decoding
time, maximum likelihood linear regression (MLLR) model
adaptation was used.

For the CNN-HMM, we used two convolutional layers
and six hidden layers. The input features were in a 24-
dimension log MEL filter bank and its delta, and delta-delta,
and their 11 adjacent frames (3 x 24 x 11). The means
and variances were globally normalized. The weight share
window size for the first convolutional layer was 9 x 9 (time
x frequency). We used only frequency axis pooling with a
window size of 3. The weight share window size for the
second convolutional layers was 3 x 4 (time X frequency).
No pooling was used in the second layer. The numbers of
nodes in the hidden layers were 1024, 1024, 1024, 1024,
1024, and 512. All of the activation functions were sigmoid
functions. In the final layer, a softmax activation function
was used to calculate the posterior probabilities of the HMM
states. The prior probabilities of the HMM states were
estimated by using the training data in an ML manner. The
pre-training was done with layer-wise cross entropy training,
followed by cross entropy based fine-tuning.

The LM was a word 3-gram estimated by using modified
Kneser-Ney smoothing [12]. The baseline LM was trained
by using transcripts of data A. We also trained an LM by
using data B. The proposed LM was made by interpolating
the baseline LM and the LM from data B. The interpolation
weight was set to 8:2 (See Section 2.3).

The decoder was our WEST decoder [13]. The LM weight
was tuned manually to achieve the lowest character error rate
(CER) for each type of AM.

3.2. Results

Table 1 shows the results of the experiments. Note that the
CER is measured over all data, both overlapped and non-
overlapped speech. We can see the sole effect of garbage
modeling and noise-robust acoustic modeling in the second
line and the third line, respectively. Both techniques had
gain from the baseline GMM-HMM. The fourth line shows
that the combination of the two techniques had further gain.
The proposed model increased the relatively small number
of deletion errors, but greatly decreased the larger number
of substitution and insertion errors caused by the overlapping
segments, so that overall CERs were reduced. The same trend
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Table 1. CER, number of substitution, insertion, and deletion errors of various AM types

AM type Garbage model Noise-robust AM CER #sub. #ins. #del.

GMM-HMM 31.8% 2591 573 1517

GMM-HMM v 312% 2501 551 1531

GMM-HMM 31.0% 2503 545 1509

GMM-HMM v 309% 2406 526 1612

CNN-HMM 29.5% 2490 654 1189

CNN-HMM v 28.5% 2176 550 1451

L-channel |s it okay?  wen then 4.2. Noise-robust acoustic modeling
R-channel sure, at the market order . .. .. . .

channe Multi-condition training is a well-known and effective
?;’:r?suciﬁption Isit okay sure at the market order approach to training a nf)l‘se-ro.bust AM ~[7, 8, 17, }8,
19].  Multi-condition training is a technique for using
ff;zlrlge Is it okay Erto show a target list as - speech data Qf varioqs types an.d.signal—to—noise ratio (SNR)
------------ Bursterrors levels of various noise as training data. We used multi-
ggfe(;:ed ls it okay —sure- OLW.'the-marI;eto-rderl condiFion training for our noise-robust AM, wl'lere the train%ng
N T data includes clean speech and speech with overlapping

Right transcripts thanks to the proposed method

Fig. 4. An artificial example of manual and system transcripts
for a monaural recording

can be found for CNN-HMM. The proposed CNN-HMM
reduced the CER approximately 1 point (3% relative) relative
to the baseline CNN-HMM.

Fig. 4 shows typical examples of transcripts of the manual
and proposed systems. We can see that the proposed garbage
model of overlap absorbed the overlapping segments that
caused burst errors of substitutions or insertions.

4. RELATION TO PRIOR WORKS

4.1. Garbage modeling

Widely used garbage modeling in ASR can be roughly
categorized into two groups according to the types of garbage
modeling. The first type is called a “tee model”, which
introduces garbage words that do not affect the context but
are inserted at an arbitrary word boundary [14]. This type
of garbage modeling is often used for the modeling of short
pauses.

The other type of garbage modeling considers the garbage
words as regular words in decoding time, and removes the
garbage words after the decoding. If the garbage words tend
to appear in certain linguistic contexts, then it works well.
This type of garbage modeling is often used for the modeling
of filler words [15, 16]. In addition, [3] found this type of
garbage modeling is effective for speaker noises such as the
noise of breathing, which has linguistic context dependency.

[2] analyzed contexts around overlapping segments and
found linguistic tendencies. Considering their result, using
the latter type of garbage modeling for speech overlapping is
reasonable.

background noise where the SNR is larger than a threshold.

4.3. Overlap modeling in speaker diarization tasks

Aside from ASR studies, there are many research projects
on tackling the overlap problem in meeting diarization tasks
[20, 21]. [21] proposed a GMM-HMM-based segmenter
of non-speech, speech, and overlapping segments for post-
processing of a baseline meeting diarization system. They
pointed out that false rejections of overlapping segments did
not affect the baseline system, but false alarms increased
errors of diarization. Because there is a trade-off relationship
between false alarms and false rejection, they tuned their
overlap detector for low false alarms (and possibly high
false rejection) operating points. Following this, we tuned
our proposed model for low false alarms by using the
interpolation weight of the LM.

5. CONCLUDING REMARKS

We proposed a combination of garbage modeling and noise-
robust acoustic modeling robust against speech overlapping
in monaural recordings of telephone conversations. If the
powers of the voices of the speakers are about the same,
the garbage model absorbs the overlapping segments, and if
the power of the voice of one of the speakers is dominant,
the noise-robust AM can recognize the dominant voice. Our
proposed method does not need any monaural recordings and
manual transcripts as input data because we generate them
from multi-channel recordings and transcripts. We confirmed
that the proposed method reduced the CER by approximately
an absolute value of 1 point, which is approximately 3%
relative to the baseline CNN-HMM system.

Our future works includes applying an advanced
technique [22, 23, 24, 25] for segments recognized as OLW.
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