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ABSTRACT

The prediction of symbolic prosodic categories from text is an
important, but challenging, natural-language processing task given
the various ways in which an input can be realized, and the fact that
knowledge about what features determine this realization is incom-
plete or inaccessible to the model. In this work, we look at aug-
menting baseline features with lexical representations that are de-
rived from text, providing continuous embeddings of the lexicon in
a lower-dimensional space. Although learned in an unsupervised
fashion, such features capture semantic and syntactic properties that
make them amenable for prosody prediction. We deploy various em-
bedding models on prominence- and phrase-break prediction tasks,
showing substantial gains, particularly for prominence prediction.

Index Terms— word embeddings, prominence prediction,
prosodic phrasing, speech synthesis, deep learning

1. INTRODUCTION

The generation of natural and expressive prosody from text is one of
the fundamental tasks in a text-to-speech (TTS) synthesis system. In
particular, prosodic phrasing, the proper assignment of prominence,
and its suitable acoustic realization, are some of the main challenges
in generating artificial speech that is perceived as natural and ex-
pressive to the task at hand. One common way in which different
synthesis architectures approach this problem is by decomposing it
into two stages: First, a linguistic front-end module assigns symbolic
intonational phrase-break and prominence labels from purely textual
features of the input. This intermediate symbolic prosodic represen-
tation is then passed to a back-end to exploit in a variety of ways (for
example, as an additional feature when generating an f0 contour, or
as an additional target in a unit-selection module).

In this work, we focus on the first stage of this approach: as-
signing word-level phrase breaks and prominence from text. This is
a task that remains challenging for several reasons. First, the prob-
lem is under-determined since a given input text string can result
in various symbolic prosodic realizations. Secondly, the linguistic
features accounting for such nuanced differences may not be well-
understood, be difficult to extract from text (e.g., attitudes), or reside
outside the text altogether (e.g., world knowledge). One approach
to improve the prediction of symbolic prosody is to refine the lin-
guistic analysis to extract richer, lower-level syntactical and seman-
tic features and discover how they correlate with prosodic realiza-
tions. A complementary research inquiry, and the one we follow in
this work, is to focus on lexical representations where word identi-
ties, or rather representations derivable from them, can serve as fea-
tures. The naı̈ve approach of using the raw lexical identity directly,

however, suffers from serious drawbacks since the high dimension-
ality of the input vocabulary will lead to data sparsity, particularly in
the supervised-training framework we adopt later in the paper when
training phrase-break and prominence classifiers. Instead, we seek
lexical representations that embed the input words in a (continuous)
lower-dimensional manifold.

Continuous word embeddings have recently received a lot of at-
tention in the literature, having been successfully applied to various
natural language processing tasks such as parsing, detecting word-
analogy and word-similarity relations, and named-entity recogni-
tion. In this work we explore their novel use for the prediction of
symbolic prosodic labels: prominence and phrase breaks. The mod-
els we consider have been trained on large amounts of text data re-
quiring no supervised learning, and have been shown to lead to em-
beddings with desirable properties, such as close proximity (using
Euclidean or cosine distances) for words that are semantically re-
lated. The emergence of semantically meaningful clusters derived
from large corpora is of particular interest for prosodic modeling,
particularly prominence, for the following reason: A prominence-
assignment model is likely to be trained with only limited amounts of
supervised data that bear prosodic-prominence annotations, and thus
have limited ability to discover equivalency classes (for the purpose
of assigning prominence) between different words (even if it had ac-
cess to lexical features). We hypothesize that semantically-related
classes may be treated similarly when assigning prosody. There-
fore, providing embedding features that capture synonymy relations
as inputs during the training stage allows the model to exploit cor-
relations between points in the embedded space and likelihood of
prominence. This, in turn, allows words not seen in the prominence-
training corpus to be treated similarly to other semantically-related
words (which do appear in the vocabulary of the word embedding),
so the prominence predictor may show better generalization, partic-
ularly when dealing with large or open classes (e.g., names) which
are poorly represented in the labeled prosodic corpus.

2. PREVIOUS AND RELATED WORK

There is a substantial literature on automatic classification of
prosodic categories going back now by a few decades. The over-
whelming focus of this body of work, however, has been on the
annotation of speech corpora, where systems have access to both
lexical and acoustic features, and the goal is to describe the actual
prosodic realizations from speakers. See the work of [1, 2, 3], where
the first reference offers a good review of the field.

The most restricted case of looking at symbolic prosody assign-
ment from text alone –the case of importance to us because of its
relevance to speech synthesis– has received comparatively far less
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attention, with some early work looking at the use of decision trees
(DT) for classification of prominence and boundaries [4], and DTs
coupled with Markov chains to model the temporal evolution of
these categories [5, 6]. None of this work explores the type of lexical
representations we are interested in.

For our work, we rely on various previously published lexical-
embedding approaches, focusing on the application of two types of
models for symbolic-prominence prediction: the Word-to-Vector [7,
8] and Global Vector [9] models, which will be described in more de-
tail in Section 3. The lexical-embedding literature is rife with recent
developments and includes other noteworthy variants, such as em-
beddings exploiting dependency-parse information [10, 11] (which
we do not explore here).

The application of embeddings to symbolic-prominence predic-
tion in a TTS front-end is a novel contribution of this paper. How-
ever, other authors have looked at related ideas for synthesis, such as
the use of embeddings in the direct prediction of vocoder parameters
in a parametric synthesizer [12]. The most closely-related work to
ours is that of [13] where the authors construct word embeddings for
phrase-break predictions from the first layer of a neural network that
updates the embeddings as it trains the phrase-break predictor. Our
work differs, however, in the type of embeddings used, in the use
of recurrent architectures, in the extension to prominence modeling,
and in the use of a two-stage approach (we use embeddings derived
from large amounts of unsupervised data, and then deploy them in a
supervised-learning task).

3. OVERVIEW OF WORD-EMBEDDING MODELS

In this section we provide a brief overview of the embedding models
explored in this work: (i) three formulations of the word-to-vector
embedding, an embedding technique based on the use of a context
window (either at the input or at the output), and (ii) the Global Vec-
tor (GloVe) embedding, which on the other hand derives embeddings
by taking into account global co-occurrence counts over a corpus.

3.1. Word-to-Vector: Skip-gram

The skip-gram model introduced in [7, 8] can be represented as a
neural network with a single hidden layer, in which a V -dimensional
one-hot encoded word input (wI ) is used to simultaneously predict
C words of context (wO,1, · · · ,wO,C ), as shown in Fig. 1 (a).

Fig. 1. Word-to-Vector Models: (a) Skip-Gram, and (b) Continuous
Bag of Words (CBOW)

Here AV×N is the input-to-hidden matrix linearly mapping in-
put words to the N -dimensional embedded space, and BN×V is a
single hidden-to-output matrix that is shared by all the output words
and allows the reconstruction of the context words from the embed-
ding of the input word. Since wI is a one-hot vector, this means that
the product

hT = wT
I A = A(k,:) (1)

simply picks the k-th row of A whenever wI = k. The rows of
the A matrix therefore contain, once the model has been properly
trained, the desiredN -dimensional embeddings for each word in the
vocabulary. The network can be trained to minimize the negative
log-likelihood of the output context given the input word. Modeling
each of theC output context panels with multinomial distributions, it
can be shown this is equivalent to minimizing the following criterion:

ESG = − log p(wO,1, · · · ,wO,C |wI)

= −
C∑
c=1

uj∗c + C log

V∑
j′=1

exp(uj′), (2)

where u = BTh is the vector of activations arriving at each of the
C output panels, and j∗c ∈ [1, · · · , V ] is the vocabulary index of the
actual c-th output context word.

3.2. Word-to-Vector: Continuous Bag of Words (CBOW)

The Continuous Bag of Words (CBOW) word-to-vector model in-
verts the formulation of the skip-gram model, attempting to predict
the current word wO based on a multi-word context wI,1, · · · ,wI,C ,
as shown on Fig. 1 (b). As in the skip-gram model, we assume the
inputs and outputs are orthogonal, hot-vector representations of a
V -sized vocabulary, with the A and B matrices retaining the same
interpretations as in the previous model. In this model, however, the
input-to-hidden matrix is applied to the average input vector:

hT =
1

C
(wI,1 + · · ·+wI,C)

TA =
1

C

C∑
c=1

A(kc,:), (3)

where now the multiplication by the (scaled) sum of input binary
vector causes an averaging of the rows of A (containing each word’s
embeddings). The loss function can be similarly defined as in the
case of the skip-gram model to be the negative log likelihood of a
multinomial (modeled with a softmax) over the V output units:

ECBOW = − log p(wO|wI,1, · · · ,wI,C)

= −uj∗
O
+ log

V∑
j′=1

exp(uj′) (4)

where u = BTh is the softmax argument, and j∗O is the index of the
output word.

3.3. Word-to-vector: Structured Skip-gram

The structured skip-gram model is introduced in [14] as a modifi-
cation of the skip-gram model where instead of a single hidden-to-
output matrix BN×V that is shared by all the output words, there is
a distinct matrix for each of the context words. That way, the model
is sensitive to the positioning of the context words, and may be more
suitable for syntax-related tasks.
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3.4. GloVe

The GloVe (Global Vector) model [9] is a simple, co-occurrence-
based approach that seeks to construct continuous vector embed-
dings of words, so as to minimize the (weighted) reconstruction, in
a least-squares sense, between the dot product of anchor and context
words, and their log co-occurrence counts. Specifically, the embed-
dings can be obtained by minimizing the following criterion func-
tion:

J =

V∑
i,j=1

f(Xij)
(
wTi w̃j + bi + b̃j − log(Xij)

)2
, (5)

where Xij is the number of times word j appears in the context of
word i for a predefined context window of length L; w and w̃ are
the word and context-word vectors (and, analogously, b and b̃ the
respective biases), and f() is the piecewise weighting function:

f(Xij) =

{
(Xij/Xmax)

α if Xij < Xmax

1 otherwise.
(6)

As we describe in Section 5 when reporting various experiments,
we have relied on GloVe embeddings of various dimensionality,
pre-trained on various corpora, and which are publicly available
from [15]. The authors report computing these embeddings with
the following choice of hyper-parameters for the above criterion:
Xmax = 100, α = 3/4, and L = 10 [9].

4. SYMBOLIC PROSODY PREDICTION

As a modeling approach we adopt Bidirectional Recurrent Neural
Networks (BiRNN) that use Long Short-Term Memory (LSTM)
units as hidden-layer non-linearities. BiRNN/LSTM models have
been recently shown to provide state-of-the-performance across
various dynamic modeling tasks that involve complex contextual de-
pendencies, including various prosodic regression and classification
tasks (e.g., prosodic-contour modeling [16, 17, 18, 19], phrase-
break prediction [20], and labeling of audio corpora with phrasing
and prominence labels [3]). The LSTM non-linearities, which act as
memory cells within the network, have been shown to be fundamen-
tal to alleviate training issues such as vanishing gradients. The use
of bidirectional structures allow contextual information from both
past and future inputs to influence the prediction at every time step,
which is a desirable property for tasks such as prominence place-
ment where upcoming word tokens can shape the speaker’s choice
for the current word. Additionally, as in the case of feed-forward
networks, several layers of BiRNN/LSTM models can be stacked to
create compositionally deep models. In the interest of space, and
given recent treatment elsewhere, the reader is directed to consult
one of the references provided for more details of the BiRNN/LSTM
models, including forward-pass equations (see, e.g., [16]). To train
the models for the experiments reported here, we have relied on the
Theano toolkit to provide the computation of the necessary gradi-
ents using back-propagation through time, and weight updates using
stochastic gradient descent [21].

4.1. Baseline Feature Set

In this section we describe the set of features that serve as inputs
to the baseline system that we wish to improve upon with the use
of additional lexical embeddings. These are all textual features that
have been previously reported in the literature for various types of
prosodic modeling, and they are defined for each wordwi as follows:

• the part-of-speech (POS) tag

• the normalized pointwise mutual information (NPMI) with
respect to the previous and following words: NPMI(wi, wi−1)
and NPMI(wi, wi+1), where:

NPMI(x, y) = log
p(x)p(y)

p(x, y)
/ log p(x, y) (7)

• the unigram probability p(wi) (this, and the probabilities
needed to estimate NPMI in Eq. 7, are obtained from a
smoothed 4-gram language model)

• type of following punctuation

• the following 6 boolean features indicating whether wi is: a)
capitalized, b) an adposition, c) a conjunction, d) an auxiliary
verb, e) a WH word, f) a function word.

• the following 2 parse features indicating syntactical coupling:
let N be the shallowest node in a parse tree dominating ter-
minals (words) wi and wi+1, and let di and di+1 be their
respective distance (i.e., number of intermediate nodes) toN .
Define then min(di, di+1) and max(di, di+1) as features.

• the Pitch-Accent Ratio (PAR): this feature provides a solid
baseline lexical feature that has already been investigated for
prominence modeling after being introduced in [22]. The
PAR is a context-free, memory-based feature summarizing
prior knowledge about the pitch-accentability, or probability
of a word being prominence-bearing. It is based on the frac-
tion of the time the unigram receives prominence in a labeled
corpus, subject to a statistical significance test, and is given
by:

PAR =

{
PRMw
Nw

if B(PRMw, Nw; θ) ≤ 0.05

0.5 otherwise,
(8)

where Nw is the number of times a word w appears in the
corpus, PRMw the number of times that it is prominent, and
B(PRMw, Nw; θ) is a binomial distribution with parame-
ter θ = 0.5. This feature equals the fraction of “successes”
whenever there is sufficient evidence in a corpus to estab-
lish how likely a word co-occurs with a prominence event,
as diagnosed by a binomial distribution. With insufficient ev-
idence, the feature reflects uncertainty and is set to 0.5.

A baseline feature vector is constructed from all the previous
features, after encoding any categorical features as binary hot vec-
tors.

5. EVALUATION

For evaluating the different approaches, we relied on a speech syn-
thesis corpus of professionally recorded speech from a female na-
tive speaker of North American English. 3730 sentences from this
corpus have been fully annotated with the Tones and Break Indices
(ToBI) inventory by an expert annotator who had access to the au-
dio and their text transcripts. The different pitch-accent labels of
the inventory were used to derive binary prominence labels for this
work. For the prosodic phrasing task, we consider intonation phrase
boundaries with index ’4’. Only the text was used to derive the input
features, and the labels matching the actual prosodic realizations of
the speaker were used as ground truth for training and evaluation.
The utterances of the corpus were split into disjoint training (80%),
development (10%) and test (10%) sets, resulting in approximately
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47.8K, 6.3K, and 5.9K word tokens respectively. The development
set was used for diagnosing convergence during the RNN training.
The training set was used for training the models, and for tabulating
the Pitch-Accent Ratio feature of Eq. 8.

A 3-layer neural network model consisting of the following
structure was trained: a single non-recurrent layer (with 160 hyper-
bolic tangent activation units), followed by 2 stacks of bidirectional
layers, each with 80x2 LSTM hidden units, and a binary output soft-
max layer. Since LSTM layers dominate the number of parameters,
we use a non-recurrent layer as the first layer, so that input features
of various dimensionalities (for the various experiments considered)
produce models of roughly comparable sizes (in the range of 320K
to 370K parameters).

The following models were trained:

• BL: A baseline model including the baseline features de-
scribed in Section 4.1 only.

• LEX-100 (LEX-300): A model using the baseline features,
augmented with a one-hot vector of word identities corre-
sponding to the most frequent 100 (300) words in the Gi-
gaword corpus. This provides an alternative baseline to the
embedded models using raw lexical features.

• SG-50: A model using the baseline features augmented with
50-dimensional embeddings from a skip-gram model we
trained on the Gigaword corpus [23], with an output layer
containing a context window with the previous and following
5 words (using the tools available in [24]).

• SSG-50 (SSG-100): A model using the baseline features aug-
mented with 50-dimensional (100-dimensional) embeddings
from a structured-skip-gram model we trained on the Giga-
word corpus, with an output layer containing a context win-
dow with the previous and following 5 words (using the tools
available in [14]).

• CBOW-300: A model using the baseline features aug-
mented with pre-trained, 300-dimensional embeddings from
a CBOW model. The embeddings used in this experiment
were trained the GoogleNews corpus, and are available
from [24].

• GloVe-50: A model using the baseline features augmented
with pre-trained, 50-dimensional embeddings from a GloVe
model. These embeddings were derived from approximately
6 billion word tokens from Wikipedia and Gigaword, and are
available from [15].

• GloVe-300: A model using the baseline features, augmented
with pre-trained, 300-dimensional embeddings from a GloVe
model. These embeddings were trained on about 840 billion
word tokens from the Common Crawl [25], and are also avail-
able from [15].

For all the embedding experiments, we used a vocabulary of
70K words. In the case of models trained with pre-published em-
beddings (CBOW-300, GloVe-50, and GloVe-300), we extracted the
embeddings relevant to our target vocabulary. For all the experi-
ments using embedding features, we assigned the zero vector to any
out-of-vocabulary words. Prior to training, all continuous-valued in-
put features were z-scored with respect to the training-set mean and
standard deviation (binary features are left intact). For each of the
models defined above, 10 different systems were trained using dif-
ferent random-seed initialization for the weights and mini-batch al-
location. The test-set average precision, recall, and F1 scores over
all 10 systems are reported in Tables 1 and 2 (with respective stan-
dard deviations in parenthesis).

Table 1. Metrics for the prominence prediction task for the baseline
model and models using embedding features.

Model Precision Recall F1
BL 0.644 (0.017) 0.444 (0.034) 0.525 (0.019)

LEX-100 0.649 (0.009) 0.458 (0.013) 0.537 (0.009)
LEX-300 0.683 (0.014) 0.457 (0.025) 0.547 (0.016)

SG-50 0.706 (0.012) 0.600 (0.033) 0.648 (0.016)
SSG-50 0.708 (0.012) 0.583 (0.037) 0.639 (0.019)

SSG-100 0.718 (0.012) 0.627 (0.024) 0.669 (0.011)
GloVe-50 0.712 (0.017) 0.599 (0.030) 0.650 (0.012)
GloVe-300 0.748 (0.011) 0.673 (0.022) 0.708 (0.009)
CBOW-300 0.742 (0.021) 0.686 (0.033) 0.712 (0.011)

Table 2. Metrics for the intonational phrase break prediction task
for the baseline model and models using embedding features.

Model Precision Recall F1
BL 0.827 (0.014) 0.796 (0.010) 0.811 (0.004)

LEX-100 0.834 (0.008) 0.796 (0.006) 0.815 (0.004)
LEX-300 0.834 (0.016) 0.805 (0.019) 0.819 (0.005)

SG-50 0.836 (0.013) 0.807 (0.018) 0.821 (0.005)
SSG-50 0.839 (0.015) 0.814 (0.014) 0.826 (0.002)

SSG-100 0.841 (0.015) 0.820 (0.020) 0.830 (0.004)
GloVe-50 0.837 (0.013) 0.809 (0.012) 0.823 (0.004)
GloVe-300 0.841 (0.014) 0.809 (0.017) 0.824 (0.004)
CBOW-300 0.834 (0.016) 0.815 (0.015) 0.824 (0.003)

6. DISCUSSION AND CONCLUSIONS

In this work we have investigated the use of continuous lexical rep-
resentations as features in prosodic phrasing- and prominence- pre-
diction tasks, such as one encounters in the text-processing front-end
of a TTS system. We have explored the contribution of embeddings
from three Word-to-Vector formulations and the GloVe model, and
shown that in all cases (and particularly for the top 2 models) the
alternatives outperform both a baseline model which included no ex-
plicit word identity information, as well as two naı̈ve baselines (LEX
models) which included raw word identity features. It is worth not-
ing that since in this naı̈ve lexical model the size of the input grows
with the size of the dictionary, it does not scale well and can suffer
from data sparsity during training. As we see, it does not signifi-
cantly outperform the basic baseline, further motivating the use of
the embedded features for this task. (The minor difference between
the LEX-100 and LEX-300 models, however, suggests this model
could learn better given a larger input vocabulary and more training
data). Although more exploration is needed, our experiments seem
to suggest that the choice of embedding dimensionality is more cru-
cial to the prediction task than the particular choice of embedding
model, with the highest absolute gains of approximately 0.187 in
F1 score (35% relative gain) being obtained with 300-dimensional
embeddings on the prominence prediction task. For the phrasing-
prediction tasks, the improvements are only modest, with the best
result (0.019 gain in F1 score, or 2.4% relative) achieved with the
structured-skip-gram embedding model, as this task is likely more
related to syntax. Future work in this area includes exploring other
embeddings to see how stable these results are across models and di-
mensions and how the phrasing-break prediction may be improved,
as well as testing the technique on other corpora and genres.
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