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ABSTRACT

This paper presents a mathematical framework that is suitable for
voice conversion and adaptation in speech processing. Voice con-
version is formulated as a search for the optimal correspondances
between a set of source-speaker spectra and a set of target-speaker
spectra under a transform that compensates speaker differences. It is
possible to simultaneously recover a bi-directional mapping between
two sets of vectors that is a parametric mapping (a transform) in one
direction and a non-parametric mapping (correspondences) in the re-
verse direction. An algorithm referred to as Matching-Minimization
(MM) is formally derived with proven convergence and an optimal
closed-form solution for each step. The algorithm is closely related
to the asymmetric-1 variant of the well-known INCA algorithm [1]
for which we also provide a proof within the same framework. The
differences between MM and INCA are delineated both theoretically
and experimentally. MM outperforms INCA in all scenarios. Like
INCA, MM does not require parallel corpora. Unlike INCA, MM is
suitable when only a few adaptation data are available.

Index Terms— INCA, voice-conversion, voice-transformation,
matching-minimization, nearest-neighbour

1. INTRODUCTION

In voice conversion we have a source speaker X and a target speaker
Y and we want to convert the voice of the source speaker to the voice
of the target speaker. Assuming that the speech signal is parameter-
ized by some vectors using, e.g. a vocoder [2], the problem effec-
tively becomes one of predicting a sequence of Y-space vectors from
a sequence of X-space vectors.

When parallel recordings are available, we can match X/Y-space
sequences using a dynamic time warping algorithm [3]. For ex-
ample, Stylianou et al. [4] proposed a conversion function that is
closely related to a mixture of linear regressions. Given a GMM
of X-space the conversion function is estimated using least-squares.
Kain et al. [5] derived the parameters of the conversion function from
a GMM of the joint source. Hui Ye et al. [6] proposed a mixture-of-
linear-regressions function (MLR) that is quite similar to the conver-
sion function [4] and estimated its parameters using a weighted error
criterion.

In many applications it is not easy to obtain parallel record-
ings. Furthermore, it is not obvious how to use Mean-Squared-Error
(MSE) criteria for voice conversion with non-parallel recordings,
which has led some researchers to resort to heuristics [7, 8]. On
the other hand, likelihood-based criteria are far more suitable
for non-parallel corpora. Likelihood-based voice conversion re-
sembles statistical adaptation techniques for Gaussian Mixture

Models (GMM) [9], and Hidden Markov Models (HMM) [10].
Mouchtaris et al. [11], proposed a constrained speaker adaptation
method that uses reference parallel recordings as anchors. Tokuda
et al. [12, 13] use MLLR-based adaptation in the context of HMM-
based speech synthesis [14]. Finally, Neural-Network-based speech
synthesis [15], [16] can also benefit from adaptation [17–19].

A MSE-based algorithm that attempts to tackle voice conver-
sion with non-parallel recordings is the INCA algorithm [20], [21].
The algorithm iterates three steps: a nearest neightbor matching
step, a transformation function training step using e.g. Kain’s et al.
method [5] and a transformation step, until convergence. The exper-
iments presented by the authors indicate that the algorithm performs
similarly to training with parallel recordings. The insights one can
get from the original INCA paper [20] are limited because the algo-
rithm was not formally derived.

Some insight was provided by Benisty et al. [1] where an at-
tempt was made to prove that the symmetric-1 variant of INCA is an
iterative minimization approach of the overall matching distortion
of Y-space vectors to X-space vectors and vice-versa. However, the
proof does not go beyond stating properties of alternating minimiza-
tion [22] and a more formal proof is needed to answer questions like
1) are nearest neighbors the optimal solution for matching, 2) how to
efficiently minimize simultaneously a function and its inverse. The
later is a hard optimization problem that in practice limits the scope
of the transformation function.

A closer look to the distortion criterion in INCA variants reveals
that when X/Y-space datasets have substantially different sizes, the
criterion is dominated by the matches of the big dataset to the small
one. This can occurs when the source is a whole TTS corpus and
the target is just a few adaptation utterances. In that case, a phone
that exists in the big dataset but not in the small one will only have
a bad match, polluting the criterion with bad matches that intuitively
should not be used.

This paper presents a probabilistic framework that overcomes
the aforementioned deficiency of INCA as a solution to the generic
problem of matching datasets under a compensating transform,
hereby referred to as Matching-Under-Transform (MUT), for a
broad family of transformation functions. An iterative algorithm is
formally derived with proven convergence: the Matching-Minimization
algorithm (MM). In contrast to [1], a closed-form optimal solution
is derived for every step of the iterative process and also provides a
short proof of INCA.

MM is derived using deterministic annealing [23] to minimize
a weighted MSE criterion. The algorithm recovers a set of hard as-
sociations (matches) in the sense that a Y-space vector is associated
only with one X-space vector, while the reverse does not hold: an
X-space vector is associated with zero or more Y-space vectors.
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Section 2 presents a probabilistic formulation of the MUT prob-
lem, the inherent bi-directional mapping, the use of deterministic
annealing and the MM algorithm. Section 3 clarifies the relation-
ship between MM and INCA and provides a formal proof for the
asymmetric-1 variant of INCA. Section 4 experimentally compares
MM versus INCA and demonstrates the effect of having diverse size
X/Y-space datasets. We report that MM significantly outperforms
INCA when Y-space data size is much smaller than X-space data
size.

2. THE MATCHING-UNDER-TRANSFORM PROBLEM

Assume that we have N samples from speaker X, ~xn ∈ <P , n =
1, ..., N and Q samples from speaker Y, ~yq ∈ <D , q = 1, ...Q,
sampled from the corresponding spaces, X and Y, respectively. X-
space and Y-space vectors cannot be compared directly but only via
a transformation function ~y = F (~x) that converts an X-space vec-
tor to a Y-space vector. We want to find which X-space vectors ~xn
correspond to a Y-space vector ~yq in the sense that F (~xn) is close to
~yq in L2 norm. The problem is trivial when we know the transfor-
mation function F (·) or the correspondances but it is combinatorial
when we don’t. A brute-force solution would involve solving for the
optimal transform for every possible mapping between X-space and
Y-space vectors.

Let d(~yq, ~xn) be a distortion metric between ~xn and ~yq:

d(~yq, ~xn) = (~yq − F (~xn))TWq(~yq − F (~xn)), (1)

where Wq is a weighting matrix depending on the Y-space vector
~yq . The weighting matrix can be used - for example - to incorporate
frequency weighting that provides better fit around Y-space formants
as in [6] and/or bandlimiting. Let p(~yq, ~xn) be the joint probability
of matching vectors ~yq and ~xn. Then, the average distortion for all
possible vector combinations is:

D =
∑
n,q

p(~yq, ~xn)d(~yq, ~xn) =
∑
q

p(~yq)
∑
n

p(~xn|~yq)d(~yq, ~xn).

(2)
The association probabilities p(~xn|~yq) contain the requested map-
ping, while the Y-space probabilities are set to be uniformly dis-
tributed: p(~yq) = 1

Q
. A uniform distribution is chosen as it implies

no knowledge, but any prior could be used. Given the way that the
distortion is formulated, for every Y-space vector there is at least one
X-space vector, while the opposite does not hold, thus there might
be X-space vectors that have no match in Y-space. This is a desirable
property at least in two cases: a) in a typical intra/cross-lingual voice
conversion scenario we have a lot of X-space vectors (i.e. a TTS cor-
pus) and just a few Y-space vectors (i.e. a few utterances), b) in a
cross-lingual voice conversion scenario, some X-space sounds may
not have their Y-space equivalent.

The ability to ignore some portions of X-space may also become
handy in cases where X-space contains noisy or irrelevant informa-
tion (i.e. silences).

2.1. Understanding the bi-directional mapping

The association probabilities p(~xn|~yq) and the transformation func-
tion ~y = F (~x) operate in different directions. This bidirectional
mapping is illustrated in Figure 1: a parametric mapping in the for-
ward direction (X → Y) via function F (·) and a non-parametric
mapping in the backward direction (Y → X) via the association
probabilities p(~xn|~yq). Qualitatively, the overall operation is bal-

anced in the sense that backward mapping counteracts the forward
mapping and vice-versa. This is a key property of the formulation of
MUT that ensures convergence to a meaningful solution.

To understand the importance of balancing the mappings, let us
examine the case where both operate in the forward direction. This
is formulated by expressing the reverse average distortion formula
as:

DREV =
∑
n

p′(~xn)
∑
q

p′(~yq|~xn)d(~yq, ~xn), (3)

and keeping p′(~xn) = 1
N

constant. There are Q zero distortion
solutions for this formulation that are degenerate because they map
all ~xn vectors to one ~yq′ vector (i.e. p′(~yq′ |~xn) = 1.0) with the
constant transform: F (~xn) = ~yq′ . Thus, the balanced mapping
prevents the existence of degenerate solutions.

X-space Y-space

y = F(x)

p(x | y)

non-parametric
mapping

parametric
mapping

Fig. 1. The bidirectional mapping: X-space is mapped to Y-space
via a parametric mapping, while Y-space is mapped back to X-space
via a non-parametric mapping.

MUT’s dual (parametric/non-parametric) nature makes it a ver-
satile tool. Depending on the application, one may choose to use it
in a parametric manner or a non-parametric manner.

2.2. Deterministic Annealing

Minimizing the average distortion D simultaneously for the trans-
formation function and the association probabilities is a non-trivial
optimization problem. From the deterministic annealing perspec-
tive [23], the associations between X-space and Y-space are always
probabilistic and their joint entropy H(Y,X) expresses the fuzzi-
ness of the matching. Zero entropy means that we are absolutely
sure of an association. Higher entropy indicates our uncertainty on
whether an association exist or not. The association entropy can be
expressed as H(Y,X) = H(Y ) + H(X|Y ). The term H(Y ) is
fixed because in the formulation we made in the previous section we
asserted that Y-space probabilities are fixed p(~yq) = 1

Q
to ensure

that all Y-space vectors were equally taken into account. The level
of the uncertainty of the associations is typically a design parameter
that reflects the level of trust one has on the associations.

Deterministic annealing simultaneously minimizes the average
distortion and the association entropy to find a solution that takes
into account both the distortion and the uncertainty of the associa-
tions. This is made by augmenting the average distortion with the
association entropy H(Y,X) = H(Y ) + H(X|Y ) or equivalently
by H(X|Y ) since H(Y ) is assumed to be constant. The entropic
term fuzzifies the optimal association probabilities so that a Y-space
vector can be mapped to more than one X-space vectors. Follow-
ing [23] we define the composite minimization criterion D′ as:

D′ = D − λH(X|Y ), (4)

where the entropy Lagrangian λ is related to the annealing tempera-
ture.
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The Lagrangian can be used to control the type of backward
mapping. When λ is zero, the mapping between Y-space and X-
space is many-to-one (many Y-space vectors may be mapped to one
X-space vector). When λ is higher, the mapping becomes many-to-
many. Thus, by controlling λ we can move between many-to-1 and
many-to-many mappings.

The minimization of D′ is made iteratively using two steps: the
first step minimizes D′ with respect to the association probabilities
and the second step minimizes D′ with respect to the transform.
Convergence is guaranteed because each step minimizes a convex
function.

2.3. Association/Matching Step

This step minimizes D′ with respect to the association probabilities
under the constraint that p(~xn|~yq) behave like a probability:∑

n

p(~xn|~yq) = 1, q = 1, ..., Q. (5)

Since D′ is convex on p(~xn|~yq), the solution can be obtained by
equating ∂D′

∂p(~xn|~yq) = 0, which yields the Gibbs distribution [23]:

p(~xn|~yq) =
exp{− 1

λ
d(~yq, ~xn)}∑

i exp{− 1
λ
d(~yq, ~xi)}

. (6)

The solution is valid as a probability because it is non-negative.
When the annealing temperature λ→ 0, the above probabilities tend
to be either 0 or 1, effectively corresponding to a minimum distance
selection. In that case, this step can be replaced by a nearest neight-
bor search for the nearest X-space vector in terms of the distance
function d(~yq, ~xn):

I(q) = argmin
n
{d(~yq, ~xn)} (7)

p(~xn|~yq) =

{
1, n = I(q)

0, otherwise.
(8)

To discriminate between the two cases, this step is referred to as
an association step when equation (6) is used and as a matching step
when equation (8) is used.

2.4. Minimization Step

At this stage we can define the transform function F (·) and solve for
its optimal parameters given the associations. This section proves
the minimization step for a broad family of transformation func-
tions, including context as in [1]. Let F (~xn) be a mixture-of-linear-
regressions function

F (~xn) =

K∑
k=1

p(k|~xn)[~µk + Σk~xn], (9)

where ~µk ∈ <D is the bias vector, Σk ∈ <D×P is a linear transfor-
mation matrix of the k-th class and p(k|~xn) is the probability that ~xn
belongs to the k-th class. As class probabilities p(k|~xn) we may use
a Gaussian Mixture Model (GMM) estimated from source-speaker
spectra, as in [4]. The GMM allows us to avoid audible abrupt tran-
sitions when switching between different regression functions. Al-
ternatively, we may use a vector quantizer, i.e. [23].

Having the parameters Σk in a matrix form is not notationally
convenient, so we will reformulate the matrix-vector multiplication

using the vector operator vec{·} and the Kronecker product:

Σk~xn = vec{Σk~xn} = (~xTn ⊗ ID)vec{Σk} = (~xTn ⊗ ID)~σk,
(10)

where ~σk ≡ vec{Σk} ∈ <DP is the vectorized transformation ma-
trix and ID ∈ <D×D the identity matrix. Note that the operator
vec{·} is simply rearranging the parameters by stacking together the
columns of the matrix.

For voice conversion it is beneficial to pack three source-speaker
(X-space) vectors together to provide a better understanding of the
spoken sound [1], [24] or to stack together the parameters and their
delta and delta-delta values. In any case, the same transform has to
be applied to all three vectors with a block-diagonal matrix Σk.

Any X-space structure can be incorporated in the above equation
with a repetition matrix R:

Σk~xn = (~xTn ⊗ ID)R~σ′k = Xn~σ
′
k, (11)

where R ∈ <DP×L contains only zeros and ones at the appropriate
locations, ~σ′k ∈ <L contains only the free parameters of the struc-
tured matrix and Xn ≡ (~xn ⊗ ID)R ∈ <D×L is the X-space data
matrix that contains the recasted information of ~xn. The latter matrix
can be very sparse.

We constrain the linear transform matrix Σk to be a block-
transform matrix as follows:

Σk =

 Σ′k 0 0
0 Σ′k 0
0 0 Σ′k

 ,
where, ~σ′k ≡ vec{Σ′k} and L = DP

9
. Deriving R is a simple exer-

cise that is omitted due to space restrictions.

Now, we may express the mapping function F (~xn) as a simple
linear regression:

F (~xn) = ∆n~µ+Bn~σ =
[

∆n Bn
] [ ~µ

~σ

]
= Γn~γ, (12)

where

∆n =
[
p(k = 1|~xn)ID ... p(k = K|~xn)ID

]
∈ <D×KD,

(13)
~µ =

[
~µT1 ~µT2 ... ~µTK

]T ∈ <KD, (14)

Bn =
[
p(k = 1|~xn)Xn ... p(k = K|~xn)Xn

]
∈ <D×KL,

(15)

~σ =
[
~σ

′T
1 ~σ

′T
2 ... ~σ

′T
K

]T
∈ <KL. (16)

Since D′ is convex on the parameters, the optimal ~γ can be obtained
by equating the corresponding partial derivative to zero

∂D′

∂~γ
= 0, (17)

which yields the following unique solution:

~γ = −

(∑
q

p(~yq)
∑
n

p(~xn|~yq)ΓTnWqΓn

)−1

(∑
q

p(~yq)
∑
n

p(~xn|~yq)ΓTnWq~yq

)
.

(18)
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2.5. The Matching-Minimization algorithm

The Matching-Minimization (MM) algorithm is derived as the limit
case of equations (6) and (18) when the annealing temperature
reaches zero. In that case, the association step (6) becomes a match-
ing step (8) and the minimization (18) considers only matched pairs
of vectors. The algorithm is iterative and alternatively minimizes the
matching and the conversion function, hence it’s name. As shown
in the previous sections, both steps are optimal and in closed form.
As expected, MM needs to start from an appropriate initialization
point. For the conversion of spectral envelopes [4], [20], [24], it is
sufficient to search for a linear frequency warping transform [20].
Summarizing, the Matching-Minimization algorithm is:

1. Initialization
2. Matching Step
3. Minimization Step
4. Repeat from step 2 until convergence.
Theoretically, one could use the deterministic annealing ap-

proach to avoid getting stuck in weak local minima but in practice it
is very hard to find the optimal annealing schedule. Given the for-
mulation in this paper, it is straightforward to derive the Association-
Minimization (AM) algorithm which is the deterministic annealing
counterpart of MM, but this algorithm is omitted due to space limi-
tation. It worth reporting that the AM algorithm does converge to a
degenerate solution once DREV is minimized instead of D.

3. RELATION TO ASYMMETRIC-1 INCA AND A PROOF
There is a direct relation between MM and the asymmetric-1 INCA
variant. In fact, the latter minimizes a composite distortion that con-
sists of the forward and the reverse average distortions (2), (3):

DINCA = D +DREV =

gy
∑
n,q

p(~xn|~yq)d(~yq, ~xn) + gx
∑
n,q

p′(~yq|~xn)d(~yq, ~xn), (19)

if we constrain the forward/backward association probabilities to be
hard (either 0 or 1). Hard association probabilities can be replaced
with appropriate index mappings I(·) and I ′(·) so that:

DINCA = gy
∑
q

d(~yq, ~xI(q)) + gx
∑
n

d(~yI′(n), ~xn), (20)

where gx, gy are the constant probabilities of a X- and Y-space vec-
tors respectively. Asymmetric-1 INCA requires gx = gy .

The association probabilities p(~xn|~yq), p′(~yq|~xn) are inde-
pendent and correspond to two different non-parametric mappings,
a forward mapping from X-space to Y-space via p′(~yq|~xn) and
a backward mapping via p(~xn|~yq). Therefore, we can use the
probabilistic formulation from Section 2 to also prove the conver-
gence and the optimality of the individual steps of the asymmetric-1
INCA, as follows: 1) augment DINCA with association entropies:
D′INCA = DINCA + λ1H(Y |X) + λ2H(X|Y ), 2) fix F (·) and solve
for p(~xn|~yq), p′(~yq|~xn), 3) fix p(~xn|~yq), p′(~yq|~xn) and solve for
F (·), 4) take the limits λ1 → 0, λ2 → 0 to obtain hard associa-
tion probabilities (matchings). The details of the proof are trivial
and omitted due to space restrictions. In relation to [1], this proof
shows the convergence of the algorithm while it provides optimal,
closed-form solutions for a broad range of transformation functions.

4. EXPERIMENT

It is interesting to investigate how INCA is effected by the distortion
term DREV that corresponds to the degenerate solution. Further, we

can expect that performance degrades when there are vectors in X-
space that cannot be reliably matched to a Y-space vector under the
transform; i.e. having a TTS corpus from the source speaker and a
few utterances from the target speaker.

We conducted an experiment using 5893 15-dimensional spec-
tral vectors from each of two female speakers A & B respectively.
70% of this dataset was used for training and the rest for testing.
The vectors correspond to HMM state means. INCA is used to esti-
mate the two component distortions: D, DREV, MM is used to mini-
mize distortionD and a special version of MM that uses the forward
mapping and thus minimizes the reverse distortion DREV was used
for reference. The experiment is conducted using randomly selected
subsets with 100%, 50%, 20%, 10% and 5% of the original 5893
vectors for Y-space. Both algorithms use a simple conversion func-
tion F (~x) = ~µ + Σ~x, where Σ is a matrix, and 15 iterations. All
algorithms were initialized using the identity matrix and zero bias.

Fig. 2. Matching distortions for several Y-space sizes.

We use spectral distortion as the evaluation criterion and we
present the average distortion for each distortion term independently.
The results are shown in Figure 2. We observe that: 1) MM has
lower distortion D than INCA for all Y-space percentages, 2) MM
has significantly lower distortion D for the backward mapping, 3)
MM behaves consistently in all percentages and, 4) The forward
mappings (DREV) have substantially lower distortion than the back-
ward mappings (D). The first two observations are easy to explain
considering that INCA minimizes an additional term than MM. The
third observation states that MM is consistent and reliable. The forth
observation is harder to explain but we suspect that it is due to the
fact that DREV has at least Q degenerate solutions with zero distor-
tion that lower the distortion functional. The latter may also render
the obtained solution to be undesirable, but a detailed investigation
of this phenomenon is beyond the scope of this paper. Never-the-
less, the fact that D and DREV have significantly different mapping
distortions raises questions.

5. CONCLUSION

A probabilistic deterministic annealing framework was used to
formally derive the Matching-Minimization algorithm and the
asymmetric-1 variant of the INCA algorithm. It is shown that
the MM algorithm is closely related to the INCA variant by aug-
menting the matching distortion of the former with an error term that
corresponds to degenerate solutions. Both algorithms converge with
each step of the iteration being optimal. MM outperforms INCA in
all settings, and significantly so for the backward mapping when the
adaptation data are less than 50% of the source-speaker data.

In [25] we demonstrate how to use MM to algorithmically gen-
erate new TTS voices with similar or even higher quality than the
original voice.
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