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ABSTRACT

This paper proposes a new approach of modeling the ex-
citation signal as deterministic and noise components. Ini-
tially, a study on characteristics of excitation or residual sig-
nal around glottal closure instant (GCI) is performed using
principal component analysis (PCA). Based on the study, the
segment of residual signal around GCI is considered as the de-
terministic component and the remaining part of the residual
signal is considered as the noise component. The determin-
istic component is parameterized using PCA coefficients, and
the noise component can be represented in terms of spectral
and amplitude envelopes. The proposed excitation modeling
approach is incorporated in the HMM-based speech synthe-
sis system. Subjective evaluation results show a significant
improvement in the quality of speech synthesized by the pro-
posed method, compared to three existing methods.

Index Terms— HMM-based speech synthesis, determin-
istic plus noise model, excitation model, residual frame, PCA.

1. INTRODUCTION

Statistical parametric speech synthesis based on hidden
Markov models (HMMs) has gained much popularity due to
its flexibility, reduced memory footprint and high-performance
[1]. In this approach, speech is modeled based on source-filter
representation. The source refers to the excitation signal pro-
duced due to the vibration of vocal folds, and the filter refers
to the sequence of time-varying resonators formed by the
vocal-tract. The vocal-tract filter and the excitation signal are
parameterized and modeled by HMMs in a unified frame-
work. Even though much research has been carried out in
recent years, the quality of synthesized speech still seems
to have degraded due to the buzziness caused by improper
parameterization of the excitation signal. This paper aims at
improving the quality of synthesized speech by developing an
efficient method for representing and modeling the excitation
signal.

In literature, several excitation modeling approaches have
been proposed for improving the quality of HMM-based
speech synthesis system (HTS). One of the initial approach
to model the excitation signal was based on mixed excitation
(ME) approach [2]. In ME, voiced excitation is composed of

both periodic and aperiodic components, where their relative
magnitudes are controlled by band-pass voicing strengths.
Later, Zen et al., have used ME approach for speech trans-
formation and representation using adaptive interpolation of
the weighted spectrum (STRAIGHT) [3] to the HTS [4]. In
[5], Glott-HMM has derived the excitation signal by modify-
ing a single natural instance of glottal flow pulse according
to the generated source parameters. Liljencrants-Fant (LF)
model has been used to generate excitation source signal in
HTS [6]. The LF parameters are modeled by HMMs, and
during synthesis the generated LF parameters are used to
control the shape of the glottal pulse. A hybrid approach
proposed in [7] utilizes a codebook of pitch-synchronous
residual frames for generating the source of excitation during
synthesis. Drugman et. al., proposed a hybrid approach based
on deterministic plus stochastic model (DSM) [8][9].

In order to reduce buzziness and improve the quality of
synthesized speech, a new approach of modeling the excita-
tion signal is proposed. In this approach, the residual signal is
decomposed into deterministic and noise components based
on principal component analysis. The deterministic compo-
nent is parameterized using PCA coefficients, and the noise
component is represented in terms of spectral and ampli-
tude envelopes. This approach is simple and computationally
less intensive, as deterministic and noise components are
extracted directly from time-domain representation, with-
out transforming to any other domain. In this paper, the
terms source, excitation, and residual are used interchange-
ably. This paper is organized as follows. Section 2 describes
the proposed excitation model. Speech synthesis using the
proposed approach is described in Section 3. Evaluation of
proposed method is provided in section 4. Section 5 con-
cludes the present work and gives some guidelines for future
work.

2. PROPOSED EXCITATION MODEL

The excitation signal is obtained by inverse filtering the
speech signal. The filter parameters model the vocal-tract
transfer function. The excitation signal is pitch-synchronously
decomposed into a number of residual frames. The number
of pitch-synchronous residual frames varies from one phone
to other. Adjacent pitch-synchronous residual frames exhibit
strong correlation [10]. On close observation, the shapes of
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Fig. 1. (a) Original residual frame. Residual frame recon-
structed using (b) 5, (c) 10, (d) 15, (e) 20 and (f) 25 eigenvec-
tors

adjacent residual frames around glottal closure instant (GCI)
are very much similar. To further analyze the characteristics
of residual signal around GCI, principal component analy-
sis is performed on the pitch-synchronous residual frames.
For analysis, we considered 10,000 residual frames extracted
from SLT speaker of CMU Arctic database [11]. The residual
frame (x) can be reconstructed by PCA analysis as follows:
x̃ =

∑N
n=1 αnun + x̄. N denotes the number of eigen-

vectors and x̄ is the sample mean of x. un and αn denote
the eigenvector corresponding to the n-th eigenvalue and the
coefficient associated to un, respectively. Original residual
frame and residual frames reconstructed using first 5, 10, 15,
20 and 25 eigenvectors are shown in Fig. 1. From the figure,
it can be observed that by considering lower order eigenvec-
tors (5 and 10), only the region around GCI (middle portion
of the residual frame) is reconstructed. Finer details present
at other regions are captured, as the order of eigenvectors is
increased. Evolution of cumulative relative dispersion (CRD)
for different number of eigenvectors is shown in Fig. 2. CRD
is defined as the ratio of variance represented by the first M
eigenvectors to the total variance. From Fig. 2, it can be
seen that about 59% of the variance is represented by the
first 20 eigenvectors which mainly corresponds to the region
around GCI of the residual frame. To represent the remain-
ing part of the residual frame, 100 higher order eigenvectors
are required. The region around GCI represents most of the
variance and hence can be regarded as dominant part of the
residual frame. The region around GCI also carries important
information related to perceptual characteristics of the voiced
speech [12][13]. In [14][8], it is stated that the segment of
residual signal around GCI is closely related to LF model [6].

Based on the above observation, the residual signal can be
divided into two parts. The first part is the small segment of
the residual signal around GCI and the second part is the re-
maining segment of the residual signal. The segment of resid-
ual signal around GCI is considered to have equal length on
either side of GCI. To ensure smooth continuity at the joining
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Fig. 2. Evolution of CRD as a function of number of eigen-
vectors for SLT speaker. Total number of eigenvectors = 200
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Fig. 3. (a) Deterministic and (b) noise components extracted
from the residual frame given in Fig. 1(a)

points, the segment of residual around GCI is Hanning win-
dowed. The Hanning windowed segment is subtracted from
the residual signal to obtain the second part. The first part can
be predicted from a small number of eigenvectors (about 20)
and hence it can be considered as the deterministic compo-
nent. The second part requires a large number of eigenvec-
tors (about 100) for accurate estimation and hence it can be
regarded as the noise component. Fig. 3 shows the determin-
istic and noise components extracted from the residual frame
shown in Fig. 1(a).

The proposed excitation model represents the residual sig-
nal as deterministic and noise components. The flow diagram
indicating different steps in the proposed excitation modeling
is shown in Fig. 4. First, energy is extracted from every frame
of the excitation signal. Then, the pitch-synchronous analy-
sis is performed on the excitation signal leading to a set of
GCI centered two-pitch period long and Hanning windowed
residual signals. The pitch periods of residual frames are nor-
malized to maximum pitch period of the speaker. The energy
of residual frame is normalized by fixing the total energy to
1. From the residual frames, deterministic and noise compo-
nents are computed using the proposed approach. The deter-
ministic component is accurately represented using 20 PCA
coefficients (explained in Sec 2.1) and the noise component is
parameterized in terms of spectral and amplitude envelopes
(explained in Sec 2.2). Harmonic to noise ratio (HNR) is
computed as the ratio of energy of deterministic and noise
components. In addition, 34th order Mel-Generalized Cep-
stral (MGC) coefficients (with α = 0.42, Fs = 16 KHz and
γ = -1/3) and F0 are extracted from speech utterances. The
extracted parameters are modeled under HMM framework.
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Fig. 4. Flowchart indicating the sequence of steps for pro-
posed excitation modeling

2.1. Parameterization of deterministic component

Before parameterizing the deterministic component, we need
to fix the length (L) of deterministic component (shown in
Fig. 3(a)). The length should be appropriately chosen such
that the deterministic component is accurately represented
with M number of eigenvectors. First, by varying the length
L from 2 to twice the normalized pitch period (in number of
samples) in steps of 2 samples, the deterministic components
are extracted from the residual frames. Here, 10,000 residual
frames from SLT speaker are considered. By considering the
deterministic components of every length L, PCA analysis
is performed. For every L, the CRD value is computed for
M number of eigenvectors. The largest possible L which
results in CRD value ≥ 95% is considered as the appropriate
length of the deterministic component. Before finding the
appropriate length L, the number of eigenvectors M should
be fixed. By varying M from 1 to 200, deterministic compo-
nents are computed. Increasing the value of M results in the
subsequent increase in the value of L and vice versa. If M is
chosen very small, the length L will also be very small, This
may not exactly capture the region around GCI and results in
reduced quality of speech. If M is chosen very large, then
the complexity of model increases and more data is required
to capture the actual distribution. For M = 20, the length of
the deterministic component is observed to be optimum. For
different lengths of deterministic components, CRD values
are computed for 20 eigenvectors. Fig. 5 provides the CRD
values computed for different lengths of deterministic com-
ponents for SLT speaker. From the figure, it can be observed
that the maximum length of the deterministic component with
CRD value greater than 95% is 56. With L = 56, the deter-
ministic components are extracted from the residual frames
of SLT speaker and PCA analysis is performed. Each de-
terministic component is compactly represented by using 20
PCA coefficients.
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Fig. 5. CRD values computed for different lengths of deter-
ministic component (L) for SLT speaker.
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Fig. 6. Block diagram showing different stages in synthesis.
Parameters generated by the HMMs are shown in italics.

2.2. Parameterization of noise component

The noise component is parameterized in terms of its spec-
tral and amplitude envelopes. The spectral envelope of the
noise component is estimated by using linear predictive cod-
ing (LPC). The order of LPC is chosen to be 10. The LPC
coefficients are converted to line spectrum frequency (LSF)
coefficients. The amplitude envelope (a(n)) is obtained by
filtering the absolute value of noise component (u(n)) with a
moving average filter of order 2N + 1. In this work, N is
chosen to be 8. Normalization of the envelope is performed
by setting the maximum value to 1. Due to smoothening by
the moving average filter, the amplitude envelope shows slow
variation. The overall shape of the amplitude envelope is rep-
resented by downsampling it into 15 samples. PCA coeffi-
cients, spectral and amplitude envelopes of the noise compo-
nent, and HNR are computed for every residual frame. As
it is convenient to model the parameters at frame size of 25
ms with frame shift of 5 ms, the parameters extracted from
the residual frames present in the frame are averaged and as-
signed as the parameters of that frame. In case of unvoiced
speech, except energy, all other excitation parameters are set
to zero.

3. SPEECH SYNTHESIS

During synthesis, MGC coefficients, F0 including voicing
decision, and excitation parameters are generated from the
HMMs using constrained maximum likelihood algorithm
[15]. The block diagram showing different synthesis stages
are shown in Fig. 6. The excitation signal is generated sep-
arately for voiced and unvoiced frames. For voiced frame,
the deterministic component of the residual frame is obtained

5637



from the linear combination of eigenvectors and target PCA
coefficients. The deterministic component is zero padded
on either side such that its length is twice the normalized
pitch period. The zero padded deterministic component is
resampled to twice the target pitch period. The noise com-
ponent of the residual frame is generated by imposing target
spectrum and amplitude envelopes on white Gaussian noise.
The energy of noise component is modified according to the
generated HNR. Both deterministic and noise components
are superimposed, and then overlap-added to generate the
excitation signal. The energy of excitation signal is modified
according to the energy measure generated from the HMM.
For unvoiced speech, white noise whose energy is modified
according to the generated energy measure is used as the
excitation signal. The resulting excitation signal is given as
input to the Mel-Generalized Log Spectrum approximation
(MGLSA) filter, controlled by MGC coefficients to generate
speech.

4. EVALUATION

The proposed method is evaluated using one female (SLT)
and one male (AWB) speakers from CMU Arctic speech
database [11]. The training set of each of the speaker con-
sists of about 1100 phonetically balanced English utterances.
The duration of the training set is about 56 and 79 minutes
for SLT and AWB speakers, respectively. 20 sentences that
were not part of training data were used for evaluation pur-
pose. Subjective evaluation is conducted with 20 research
scholars in the age group of 23-35 years. The subjects have
sufficient speech knowledge for proper assessment of the
speech signals. The quality of synthesized speech from the
proposed method is compared with three existing methods,
namely, pulse-HTS, STRAIGHT-HTS [4] and DSM-HTS
[8]. In pulse-HTS, a sequence of pulses positioned accord-
ing to the generated pitch is used as the excitation signal. In
STRAIGHT-HTS, the excitation signal consists of a sequence
of impulses and noise components weighted by band-pass fil-
tered aperiodicity parameters. In DSM-HTS, the excitation
signal is constructed by modifying the previously stored
deterministic component and the energy envelope of noise
component according to the generated pitch. Before evalua-
tion, the energy of speech samples are normalized to the same
level.

Subjective evaluation is performed using two measures,
namely, comparative mean opinion scores (CMOS) and pref-
erence tests. In CMOS, subjects were asked to listen to
two versions, namely, speech synthesized from the proposed
method and the other from the existing methods. Two ver-
sions were randomly shuffled to avoid the bias towards any
specific method. Subjects were asked to grade the overall
preference on a 7-point scale (-3 to +3). A positive score
indicates that the proposed method is preferred over other
method, and negative score implies the opposite. CMOS
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Fig. 7. (a) CMOS with 95% confidence intervals and (b)
preference scores.

scores with 95% confidence intervals are shown in Fig. 7(a).
CMOS scores of both female and male speakers are varying
between 0.1 to 1.5 which indicates that the proposed method
is better than the existing methods. CMOS scores of the
female speaker are relatively higher compared to the male
speaker. Among three methods, CMOS score of DSM-HTS
has the lowest value (close to 0). The reason for low value
is that both methods parameterize the excitation signal for
every glottal cycle. The proposed method is slightly better as
the segment of residual signal around GCI which is important
for perception of speech is accurately represented. In pref-
erence tests, subjects were asked to either prefer one of the
synthesized speech utterances or to prefer both as equal. The
preference scores are provided in Fig. 7(b). For both female
and male speakers, subjects preferred the proposed method
compared to other three methods.

5. CONCLUSION

This paper proposed a parametric approach of modeling the
excitation signal as deterministic and noise components. The
deterministic component is modeled using PCA coefficients,
and the noise components are parameterized in terms of spec-
tral and amplitude envelopes. During synthesis, the deter-
ministic and noise components are reconstructed from the pa-
rameters generated from HMMs. The evaluation results in-
dicated that the quality of proposed method is considerably
better compared to three existing methods. In this work, PCA
analysis is performed on the residual frames of all phones. In-
stead, PCA analysis can be performed on the residual frames
of every phone, and the quality of synthesized speech can be
analyzed. The relation between time and frequency domain
decomposition of excitation signal can also be analyzed.
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