
INITIAL INVESTIGATION OF SPEECH SYNTHESIS BASED ON COMPLEX-VALUED
NEURAL NETWORKS

Qiong Hu1, Junichi Yamagishi1, Korin Richmond1, Kartick Subramanian2, Yannis Stylianou3

1The Centre for Speech Technology Research, University of Edinburgh, UK
2School of Computer Engineering, Nanyang Technological University, Singapore

3Toshiba Research Europe Ltd, Cambridge, U.K.

ABSTRACT

Although frequency analysis often leads us to a speech signal
in the complex domain, the acoustic models we frequently use
are designed for real-valued data. Phase is usually ignored or
modelled separately from spectral amplitude. Here, we pro-
pose a complex-valued neural network (CVNN) for directly
modelling the results of the frequency analysis in the com-
plex domain (such as the complex amplitude). We also in-
troduce a phase encoding technique to map real-valued data
(e.g. cepstra or log amplitudes) into the complex domain so
we can use the same CVNN processing seamlessly. In this pa-
per, a fully complex-valued neural network, namely a neural
network where all of the weight matrices, activation functions
and learning algorithms are in the complex domain, is applied
for speech synthesis. Results show its ability to model both
complex-valued and real-valued data.

Index Terms— complex-valued neural network, speech
synthesis, complex amplitude, phase modelling

1. INTRODUCTION

For many real-valued signals (e.g. image or audio), one of the
most frequently used approaches is frequency-domain analy-
sis such as the Fourier transform, which normally leads us to
a single z ∈ C in an Euler representation of the complex do-
main, z = Aei∗ϕ = A(cosϕ+ i sinϕ) whereA ∈ R and ϕ ∈
R are the amplitude and phase of the signal respectively. The
analysis of the amplitudes of each frequency bin, that is, spec-
tral amplitude analysis, is dominant in many speech process-
ing applications because of its relevance to speech perception.
Its parameterisations using cepstra, line spectral pairs or log
amplitudes are well studied for the statistical modelling used
in speech synthesis. Various models have been proposed to
model the statistical behaviour of these parameters, e.g. hid-
den Markov models (HMM) [1], deep neural networks (DNN)
[2] and linear dynamic models (LDM) [3].

Meanwhile, recent studies have elaborated the potential
of using phase features in speech enhancement [4], recogni-
tion [5] and synthesis [6]. The common strategy among these
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methods is to analyse and model the amplitude and phase sep-
arately. There have been various attempts at phase represen-
tation, e.g. relative phase shift [7], group delay [8], phase dis-
persion [9], phase distortion [10] and the complex cepstrum
[6] for speech synthesis. For example, in [6] and [11], com-
plex cepstra or a cepstrum-like representation calculated from
the standard deviation of phase distortion have been mod-
elled, respectively, using an additional independent stream in
HMM-based statistical parametric speech synthesis (SPSS) to
improve the quality of the vocoded speech.

An alternative approach to such explicit and separate am-
plitude and phase feature representations is to combine ampli-
tude and phase together by representing a signal as a complex
value z = u + iv ∈ C and then modelling the signal z using
a new statistical model that can deal with complex numbers
directly. Here, we may use both the amplitude and phase in-
formation of the signal as a part of the new objective function
in the complex domain EC(z) = ÊC(A,ϕ) for training the
models so that the model can consider errors of the amplitude
A and phase ϕ of the signal z jointly. There are a few ex-
amples of pioneering work we can look at that have extended
statistical models into the complex domain. [12] has defined
a “complex normal distribution” using a mean vector, covari-
ance and relation matrices, which is a normal distribution in
the complex domain. Although there is little work in the liter-
ature about how to define HMMs for complex-value observa-
tions, there are a few nice attempts to extend neural networks
into the complex domain, which is referred to as a “complex-
valued neural network” (CVNN) [13, 14, 15, 16, 17]. Since
DNNs, which use many stacked layers, have shown their ef-
fectiveness for improving the quality of synthetic speech, it is
theoretically and scientifically interesting to extend the neural
network-based speech synthesis into the CVNN framework.

The first approach to modelling complex-valued signals
using CVNNs was to split real and imaginary parts of the
complex-valued signals into two real-valued signals [13] and
to use normal real-valued neutral networks. However, this re-
sulted in a poor approximation, especially of phase, because
this model cannot represent relationships between real and
imaginary parts properly, and hence the gradient to be used
for model training may be incorrect. Therefore, a so-called
fully CVNN where all inputs/outputs, weight matrices and
activation functions are in the complex domain, along with
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a corresponding training algorithm have been proposed by
[14, 15, 16]. It has already been applied to wind prediction,
imagine enhancement, and landmine prediction [17] and has
shown its effectiveness. However as far as we know, its appli-
cation to speech synthesis has not been reported yet.

So, in this paper, we investigate a few ways to apply a
full CVNN to SPSS. The technical challenges we face are:
i) In the literature, CVNNs where input and output vectors
are complex-valued have mainly been investigated, whereas
for SPSS, linguistic vectors are real-valued; ii) In addition
to cases where acoustic features are complex-valued, it is
also interesting to apply the CVNN into the traditional real-
valued acoustic features. This is motivated by the fact that
for real-valued classification tasks, a CVNN has the same
performance as a real-valued NN with a larger number of
neurons [18]. Note that speech synthesis is a regression
task, which is different from tasks reported in the literature;
iii) Complex amplitudes extracted from [19] can be used as
complex-valued outputs where phase is composed of lin-
ear phase, minimum phase and disperse phase. Here, linear
phase should be omitted in the calculation of the amplitude-
phase objective function since analysis window position is
unrelated to linguistic input. However, the computation of
disperse phase from a sparse sinusoid representation has not
been studied yet. Hence, its inaccurate calculation may affect
the analysis of the CVNN’s ability to model complex-valued
acoustic features.

Therefore, in this preliminary work complex amplitudes
with only calculated minimum phase are considered for the
fully complex-valued feed-forward network. Its activation
functions have to be carefully defined so its differentiable gra-
dients exist almost everywhere in the complex plane. In this
paper, a complex exponential function, which has singularity
points at±∞ only is used at the output layer. For the learning
algorithm, a complex-valued back-propagation algorithm us-
ing a logarithmic minimisation criterion which includes both
amplitude and phase errors is used. We also apply the CVNN
to model real acoustic features for SPSS. For this purpose,
a phase encoding technique is introduced to map the real-
valued data into the complex domain.

This paper is organised as follows. Since CVNNs are not
generally known in the synthesis field, we overview them in
Section 2. Our experiments are reported in Section 3. We
then summarise this preliminary work in Section 4.

2. COMPLEX-VALUED NEURAL NETWORKS

2.1. CVNN architecture

Here we explain CVNN formulations using a one hidden
layer network as an example. Deeper architectures may
also be constructed. Let x = [x1, · · · , xm]> ∈ Cm and
y = [y1, · · · , yn]> ∈ Cn be the m-dimensional input and
n-dimensional output complex-valued vectors for the net-
work, respectively. A projection operation from the input
layer to the hidden layer z = [z1, · · · , zh] ∈ Ch using a

complex-valued matrix W in ∈ Ch×m can be written as:

z = [z1, · · · , zh] = fC(W inx) (1)

where fC(·) denotes an element-wise complex-valued non-
linear activation operation and each element is transformed
using fC(z). Then a linear projection operation from the hid-
den layer to the output layer using a complex-valued matrix
W out ∈ Cn×h can also be written as:

y = W outz. (2)

So the CVNN architecture is almost the same as normal neu-
ral networks apart from the complex-valued non-linear acti-
vation function fC(z), which is described in the next section.

2.2. Complex-valued activation function

As all the inputs and weights in a CVNN are complex-
valued, the activation function also has to be extended into
the complex domain. The complex activation function should
be “almost bounded” and differentiable according to Liou-
ville’s theorem [20] so that we can derive the gradient based
back-propagation algorithm. In the classic approach [13],
two real valued functions were used for real and imagi-
nary parts separately as an approximated activation function
fC→R(z). An example of such a function is as follows:
fC(z) ≈ fC→R(z) =

√
fR(u)2 + fR(v)2, where fR is a

normal-valued activation function such as a sigmoid func-
tion. Later a set of elementary transcendental functions such
as “asinh”, “atan”, “atanh”, “asin”, “tan”, or “tanh” [16],
which have a limited number of singular points, were sug-
gested as possible choices of activation functions for the full
CVNN.

Recently, the complex version of an exponential function
was proposed as a good activation function for the fully com-
plex CVNN [21], as its singularities are located at ±∞ only,
which ensures the activation function is continuous in the in-
put range. The exponential function can also help avoid cal-
culating the derivative ( 1ŷ ) of the logarithmic error (Section
2.3) during back-propagation. Therefore, instead of a linear
function, an exponential function is employed at the output
layer. The complex version of an exponential function can be
written as:

fC(z) = f ′C(z) = eu+i∗v = eu(cos v + i sin v). (3)

2.3. Objective functions and back-propagation

The back-propagation algorithm, which calculates the gra-
dient of an objective function EC(y, ŷ) with respect to all
the weights in the CVNN, can also be clearly defined. Here
ŷ = [ŷ1, · · · , ŷn]> ∈ Cn denotes a target complex-valued
vector and ŷ ∈ C denote an element of the vector. Mean
squared error is often used as the minimisation criterion. For
complex-valued signals, the squared error represents only the
magnitude of error explicitly and does not include the phase
error directly. Here, instead, a logarithmic error function [21],
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Table 1. Configuration for different systems
ID Spectral feature Phase System

INT-En-C RDC Encoded CVNN
DIR-En-C log amplitude Encoded CVNN
DIR-Ze-R log amplitude Zero RVNN

CDIR-Mi-C complex amplitude Minimum CVNN

which includes both magnitude and phase error explicitly is
used as the objective function.

EC(y, ŷ) =
1

2

[
log

[
y

ŷ

]
log

[
y

ŷ

]]
(4)

=
1

2

[
log

[
|y|
|ŷ|

]2
+ [Arg(y)−Arg(ŷ)]

2

]
(5)

=
1

2

[
log
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Aŷ

]2
+ [ϕy − ϕŷ]

2

]
(6)

where log
[
y
ŷ

]
is the complex-conjugate of log

[
y
ŷ

]
, Ay and

Aŷ are magnitudes of y and ŷ, respectively and ϕy and ϕŷ

are phases of y and ŷ, respectively. Moreover, constants k1
and k2 may further be introduced as weighting factors for the
magnitude and phase errors:

EC(y, ŷ) =
1

2

[
k1 log

[
Ay

Aŷ

]2
+ k2 [ϕy − ϕŷ]

2

]
(7)

Based on the objective function, the derivative of the ob-
jective function with respect to the l-th row k-th column ele-
ment of the output weight matrix W out denoted wlk = wR

lk +
i ∗ wI

lk ∈ C is given by

∂EC(yl, ŷl)

∂wlk
=
∂EC(yl, ŷl)

∂wR
lk

+ i
∂EC(yl, ŷl)

∂wI
lk

(8)

By chain rule application, the update of wlk, that is ∆wlk, is
given by

∆wlk = δ zk

[
k1 log

[
Ay

Aŷ

]
+ i ∗ k2 [ϕy − ϕŷ]

]
(9)

where zk is the conjugate of k-th hidden unit of z. δ is the
learning rate 1. For the derivation of the updates of W in,
please refer to [20, 21].

2.4. Phase coding

For the special case where the input vector is real-valued,
it is empirically recommended to transform it into the com-
plex representation [15]. For this we adopt a heuristic so-
lution called phase encoding [15] using the transformation
x̃ = cosx′ + i sinx′ where x′ ∈ R is the real-valued data
and x̃ ∈ C is the obtained complex value, which is located
on the unit circle. Note that in order to ensure a one-to-one
mapping, x′ is normalised to lie within the circle beforehand.

1This learning rate parameter δ can be real, imaginary or complex valued

3. EVALUATION FOR SPEECH SYNTHESIS

3.1. System configuration

Speech data [22] from a British male professional speaker is
used for training the synthesis system. The database consists
of 2400 utterances for training, 70 for testing, recorded with
a sample rate of 16kHz. The input features consist of 160
bottleneck features [23] as a compact, learned linguistic rep-
resentation. For spectral features, either i) 50 regularized dis-
crete cepstra (RDC) extracted from the amplitudes of the har-
monic dynamic model (HDM) [24] or ii) 50 highly correlated
log amplitudes from the perceptual dynamic sinusoidal model
(PDM) [25] are used as real-valued spectral output. 50 com-
plex amplitudes with minimum phase extracted from PDM
[19] are applied as complex-valued spectral output. Continu-
ous logF0 and a voiced/unvoiced (vuv) binary value together
with either type of these spectral features are used to repre-
sent output features (total dimensions: 52). Maximum like-
lihood parameter generation [26] and slope information from
the dynamic sinusoidal model are not included in this paper.
Both real-valued inputs and outputs are normalised and then
phase encoded by preprocessing. For complex amplitudes,
only amplitude is normalised. For the CVNN systems, two
hidden layers are used with 100 complex neurons per layer.
Sinh and expotential function are used as hidden and out-
put layer activation functions. The values of the weighting
factors k1 and k2 for amplitude and phase are both set as 1.5.
During training, the batch size is set as 300 with a learning
rate of 0.0002. The complex weights are randomly initialised
to a ball with small radius to achieve the bounded behaviour.
For comparison, we also develop a real-valued neural network
(RVNN) system under the same configuration except real-
valued weights and inputs/outputs are applied. Some gener-
ated samples are available online for the reader to hear2.

3.2. Experiment

To test the CVNN on real valued data, RDC features are first
applied as the spectral representation. Both input and output
in system INT-En-C (Table 1) are phase-encoded. The tra-
jectory of the 2nd RDC for one utterance is shown in Fig. 1.
We can see that the CVNN can predict a reasonable trajec-
tory (red) compared with the natural one (blue). Then, we
further apply this phase encoded system to the highly corre-
lated log amplitude features (system DIR-En-C). The natural
and generated trajectories of logF0, vuv and 2nd log ampli-
tude for one utterance is shown in Fig. 2 (left). We can see
the CVNN can also generate reasonable trajectories for those
features. For the real-valued data, we can also apply the tra-
ditional RVNN system to map the real-valued inputs to out-
puts directly. Therefore, here we also train an RVNN sys-
tem (DIR-Ze-R) to map the real valued linguistic input to log
amplitudes. Table 2 shows that while the same number of
neurons, layers and activation function are applied, using the
CVNN can result in smaller errors than the RVNN system.

2http://homepages.inf.ed.ac.uk/s1164800/CVNN.html
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Fig. 1. Trajectories of predicted and natural 2-nd RDC for
INT-En-C (blue: natural; red: generated)
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Fig. 2. Trajectories of predicted and natural logF0, vuv, 2nd
log amplitude (left: DIR-En-C, right: CDIR-Mi-C; blue: nat-
ural, red: generated)

Finally, we test the ability of CVNNs for modelling com-
plex valued acoustic features (system CDIR-Mi-C). In this pa-
per, to avoid the influence of inaccurate disperse phase calcu-
lation from the sparse representation of sinusoids, only com-
plex amplitudes with minimum phase extracted from a fixed
number of sinusoids [25] are used as the spectral representa-
tion. For linguistic context features, logF0 and vuv, phase
coding is applied. From Fig. 3, we can see that error for both
amplitude and phase decreases with epoch for training and
testing data. The generated trajectories of vuv, logF0, and the
2nd log amplitude are shown in Fig. 2 (right). Compared with
result trained from DIR-En-C, CDIR-Min-C can also predict
a similar trajectory for amplitude. Meanwhile, we also plot
the minimum phase trajectory of the 2nd complex amplitude
predicted from the CVNN (red) with the natural one (blue) in
Fig. 4. We can see that it can also generate a reasonable phase
trajectory.

Table 2. Objective results for CVNN and RVNN systems
ID log amplitude vuv f0

RMSE (dB) rate (%) RMSE (Hz)
DIR-Ze-RVNN 5.57 5.20 10.18
DIR-En-CVNN 5.44 3.44 10.17

4. CONCLUSION

Complex valued analysis in the frequency domain is a method
that is used often for speech signals. But most statistical mod-
els are designed for real-valued data. This paper mainly intro-
duces a complex valued neural network for SPSS and investi-
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Fig. 3. RMSE for amplitude (left) and phase (right) for CDIR-
Mi-C (blue: training data; red: testing data)
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Fig. 4. Trajectories of the minimum phase for predicted and
natural 2nd complex amplitude for CDIR-Mi-C (blue: natu-
ral; red: generated)

gates methods to model both real and complex valued acous-
tic signals using the proposed system. A fully complex val-
ued feed-forward network is applied for speech synthesis with
complex valued weights, activation function and learning al-
gorithm. Real valued data is phase encoded prior to CVNN
processing. Log amplitudes with minimum phase extracted
from PDM is applied as complex valued output. Our results
show the potential of using CVNNs for modelling both real
and complex valued acoustic features.

However, when interpreting the experiment, it is neces-
sary to bear in mind certain caveats. First, although results
indicate the CVNN’s ability to model both amplitude and
phase, only minimum phase is modelled here. This is nor-
mally derived from generated amplitude and does not convey
new information. So the performance of using other phase
representations (e.g. disperse phase) still needs to be tested.
Second, objective results show that for real-valued log am-
plitudes, CVNNs outperform the traditional RVNN, but the
weights contained in the former system are complex, so their
dimensionality is almost doubled compared to the RVNN.
Finally, although the systems can generate speech with rea-
sonable quality by using only two hidden layers with 100
nodes each, a listening test has not been conducted in this
preliminary work, as the framework needs to be further re-
fined to improve voice quality. Further work will focus on
using CVNNs for modelling other type of phase representa-
tion with greater numbers of neurons and layers.
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