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ABSTRACT

This paper presents a new method for cross-lingual speaker
adaptation in the framework of HMM-based speech synthe-
sis. Taking two HTS voice models as input, one for the de-
sired language and another for the aimed speaker identity, it
yields a third model that produces speech in the target lan-
guage while sounding like the target speaker. The method
operates at segmental level (spectral information and average
fundamental frequency) and does not require any phonetic
or linguistic information. Perceptual evaluation experiments
show that, when the input models are good enough, the result-
ing synthetic voice is perceived as similar to the target speaker
with no important quality degradation.

Index Terms— HMM-based speech synthesis, Cross-
lingual speaker adaptation, Polyglot synthesis, Multilingual
synthesis

1. INTRODUCTION

Text-to-Speech (TTS) systems have traditionally required a
costly process of recording new voices in order to synthesize
new speakers, speaking styles, emotions or languages. How-
ever, the emergence of statistical parametric speech synthesis
[1] made possible the modification of the speech characteris-
tics and/or speaker identity in a quite flexible way, avoiding
the need of long additional recordings. In particular, HMM-
based speech synthesis is able to make such modifications by
means of speaker adaptation techniques [2, 3]. Nevertheless,
up to now, most of the work in this field has been focused on
intra-lingual speaker adaptation (source and target speakers
speak the same language) while the cross-lingual paradigm
(source and target speakers speak different languages) seems
to be less explored.

Regarding cross-lingual adaptation, in [4] the authors pro-
pose a HMM-based method for synthesizing speech in mul-
tiple languages from a single language-independent acoustic
model. This acoustic model is first trained from speech data
of several speakers in different languages and then it may
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be adapted to any specific speaker to obtain a speaker de-
pendent (SD) model. As a result, it is possible to synthesize
speech from any SD model in any language in the training
set. In [5] and [6] a mobile device that implements person-
alized speech-to-speech translation is presented. Among the
integrated algorithms in this device, there is a cross-lingual
speaker adaptation method which is based on a state-level
mapping, first proposed in [7]. This mapping makes use of
the minimum Kullback-Leibler divergence (KLD) between
paired HMM states in the input and the output languages.
Another method for obtaining polyglot speech synthesis is
described in [8]. In this case, the speech is factorized into
speaker-specific and language-specific characteristics, which
are modeled by separate transforms. Thus, language and
speaker features can be independently controlled.

Within the standard HMM-based synthesis framework
[9], this paper proposes a new method to combine the
language-dependent structure of a synthesis voice model
with the acoustic characteristics of another model trained for
a different language. Unlike classical adaptation techniques,
where the source model is transformed to fit some input data
from a target speaker, the proposed technique transforms the
source model to be acoustically closer to another model that
conveys the identity of the target speaker. As a result, a third
model is built, which is able to produce synthetic speech
in the same language as the source model using the target
speaker’s voice. The proposed method uses the INCA algo-
rithm [10, 11] to align the states of the two involved models;
then, a transformation function is trained to transform the
acoustic emission distributions of the source model states
into those of the target speaker’s model. The main advan-
tage of the method is its language independent condition:
model-to-model adaptation is performed rapidly without any
phonetic or linguistic information. In exchange, it can deal
only with the segmental characteristics of voice, i.e. spectral
information (more specifically, Mel-cesptral representation
of the spectral envelope) and mean fundamental frequency.

The proposed method is applicable, for instance, to build
a multilingual speech synthesizer with a unique voice. Us-
ing heterogeneous models already available for each of the
involved languages, this can be done by cloning one of the
speakers in all of these languages. In the context of person-
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alized speech-to-speech translation, a voice model of the user
in his/her own language can be obtained by means of stan-
dard adaptation techniques; then, the speaker identity can be
transferred to a model in the desired language thanks to the
proposed method. Alternatively, the method can be applied to
homogenize the average voice models of several languages,
so that adaptation transforms trained for one language can be
applied to all of them.

The remainder of this paper is structured as follows: sec-
tion 2 explains the proposed adaptation method; section 3
presents the evaluation experiments and a discussion of the
results; and finally, section 4 summarizes the main conclu-
sions.

2. DESCRIPTION OF THE METHOD

Given two HTS voice models in two different languages, let’s
say model 1 and model 2, the goal is to obtain a new model,
model 3, with the linguistic structure of model 1 and the
acoustic properties of the voice given by model 2. The idea is
illustrated in Fig. 1. The proposed method estimates a map-
ping between the emission distributions (Gaussian p.d.f.’s) of
both models, and then projects the distributions of model 1
onto those of model 2 without altering its linguistic structure.
For clarity, we will refer to model 1 as source speaker model
and model 2 as target speaker model.

Each of the input models is composed by three different
acoustic streams: logarithm of the fundamental frequency
(logF0), Mel-cepstral representation of the spectral enve-
lope, and excitation parameters. This preliminary study is fo-
cused mainly on transforming the cepstral part of the source
model without using any linguistic feature. As for logF0,
since the specific intonation patterns of each language (and
also each speaker) are difficult to capture with a set of relevant
acoustic features, we apply a simple mean normalization. The
excitation, the durations and the global variance statistics of
the source voice model are kept unmodified.

Fig. 1. Cloning of HTS voices.

2.1. MCEP adaptation

The cepstral information of the source model is projected onto
the cepstral space of the target speaker’s model. We can dis-
tinguish two stages: one initial stage for the alignment of the
distributions of both models, and a second one for estimat-
ing the final mapping between them. Fig. 2 shows the block
diagram of the whole process.

2.1.1. Alignment of mean vectors

In the standard HTS configuration, five emitting states per
phone are considered; thus, states are arranged in five dif-
ferent decision trees. The first step of this stage is to compact,
for both models, the whole set of Mel-cepstral distributions
of the five trees. In practice, we found it was convenient to
consider for alignment only the static part of the mean vec-
tors of the distributions. Also, in order to take into account
the relative importance of the distributions within the model,
each one is assigned a weight that is proportional to the occu-
pancy of that state when the model was trained. From here on,
we will refer to the static part of the source mean vectors as
X = {xi}i=1...Nx and to the target one as Y = {yj}j=1...Ny .
Their weights will be referred to as {wi} and {vj} respec-
tively. We will assume that these weights are normalized:∑Nx

i=1 wi =
∑Ny

j=1 vj = 1.
The next step is to find an acoustic correspondence be-

tween the states of the two models. To do that, {xi} and {yj}
are paired using a modified version of the INCA algorithm
[10], which was originally proposed for a similar purpose in
the voice conversion field. Our implementation of INCA con-
sists of the following steps:

1. Initialization of an auxiliary vector set X ′: X ′ = X

2. Bi-directional nearest neighbor search between the vec-
tors in X ′ and those in Y , allowing repetitions:

î = arg min
j=1...Ny

‖x′i−yj‖ , ĵ = arg min
i=1...Nx

‖yj−x′i‖ (1)

3. Training of a linear projection function F (x) = Ax+b
between X and Y , given the current index pairs {i ↔
î} and {ĵ ↔ j}:

{A,b} = arg min
∑Nx

i=1 pi,̂i‖F (xi)− yî‖2+

+
∑Ny

j=1 pĵ,j‖F (xĵ)− yj‖2
(2)

Unlike the original implementation of INCA, the
weight of each pair is calculated as

pi,j = wi
vj
Vi

+ vj
wi

Wj
(3)

where Vi is the sum of the individual weights of all the
vectors paired with x′i and Wj is the sum of the weights
of the vectors paired with yj , with possible repetitions.
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Fig. 2. Block diagram of the MCEP adaptation.

4. Update of X ′ in accordance with the new F : X ′ =
{x′i},x′i = F (xi)

5. If the maximum number of iterations has been reached
or there are no changes with respect to the last iteration,
exit; otherwise, go back to step 2.

In the general case, the minimization at step 3 can be carried
out by solving an overdetermined set of equations. For clarity,
let us now denote the N source-target pairs at a given INCA
iteration as {xn,yn}, with weights {pn}. Under this notation,
the solution of eq. (2) is

W = [A b]> = (X̂>X̂)−1X̂>Y (4)

where

X̂ =

 p1x̂
>
1

...
pN x̂>N

 , x̂>n = [x>n 1] , Y =

 p1y
>
1

...
pNy>N

 (5)

In practice, however, N is low in comparison with the number
of unknowns of W. To overcome this problem, A is forced
to be a band-matrix with an adjustable number of diagonal
bands. In that case, the non-zero elements of W are computed
in a column-by-column fashion (the mathematical details are
omitted because of space limitations).

2.1.2. Final mapping

Finally, a transformation function is trained using the defini-
tive set of paired vectors. Before that, to compensate for one-
to-many alignment, for each source vector paired with more
than one target vector, we keep only the target vector with the
largest weight. At the same time, duplicate pairs are elimi-
nated. As a result, we get a final set of Nx vector pairs de-
noted {xn,yn}. Since some of the initial target vectors may
not take part in the final set, the weights {vn} are renormal-
ized so that their sum equals 1 again.

Before training the final transformation, we perform a soft
classification of the source vectors {xn} using a Gaussian

mixture model (GMM) of G components, denoted Θ. Then,
a probabilistic combination of linear transforms given by

F (x) =

G∑
g=1

P (g/x,Θ)[Agx + bg] (6)

is trained via error minimization:

{Ag,bg}g=1...G = argmin

N∑
n=1

pn‖yn − F (xn)‖2 (7)

where pn = wn + vn. Similar transforms are trained also
for the dynamic parts of the mean vectors of the source and
target distributions, {∆xn,∆yn} and {∆2xn,∆

2yn}, which
had been kept aside until now. The training procedure is sim-
ilar to that in [12], with some modifications to control the
number of diagonal bands of the involved matrices. Finally,
to get the output voice model, the mean Mel-cepstral vectors
of all the distributions in the source model are replaced by
their transformed counterparts.

2.2. F0 adaptation

Similarly as in the Mel-cepstral part, the first step is to com-
pact the distributions of the five decision trees created for
logF0. Once again, we only use the static part of the mean
vectors, denoted as {xi} and {yj} (in this case these are
scalars), to perform the adaptation. Since the F0 is modelled
through Multi-space distributions (MSD) [13], the weight as-
signed to each distribution is calculated as the product of the
normalized state occupancies and its so-called MSD weight
(which can be interpreted as the probability of voicing). The
resulting source and target weights are referred to as {w̌i} and
{v̌j} respectively. Given their strong linguistic dependencies,
intonation patterns are beyond the scope of this work; instead,
we perform a simple average logF0 normalization expressed
as

F (xi) = xi −
∑Nx

i=1 w̌ixi∑Nx

i=1 w̌i

+

∑Ny

j=1 v̌jyj∑Ny

j=1 v̌j
(8)

5617



3. EXPERIMENTS AND DISCUSSION

Before the formal evaluation of the system, its configuration
was optimized by means of informal listening tests. The best
performance was achieved for the following settings:

• The 0th Mel-cepstral coefficient is not considered, neither
for the alignment nor for the final mapping of mean vec-
tors. States corresponding to silences are also excluded.

• Only the first 15 static Mel-cepstral coefficients are used
for the alignment. Using more coefficients increases the
computational load with no audible improvement.

• Band-matrices of radius 4 (9 diagonal bands) are used for
both alignment and transformation.

• The maximum number of INCA iterations is set to 25.

The proposed method was evaluated by means of a per-
ceptual listening test. Since, to the best of the authors’ knowl-
edge, there was no baseline method that could be used as ref-
erence for comparison, we calculated differential mean opin-
ion score (DMOS) for two aspects of the cloned voices: simi-
larity to the target speaker, and quality in comparison with the
source synthetic voice.

We used speech databases in four different languages:
English, Castilian Spanish, Basque and Galician. We selected
two female and two male synthetic voice models: FS (Spanish
female), FG (Galician female), MB (Basque male) and ME
(English male). The amount of training utterances per voice
was approximately 2000, 10000, 4000 and 2800, respectively.
The models were trained using version 2.2 of HTS. Acoustic
analyses were performed using the same vocoder, namely
Ahocoder [14], and language-specific text analyzers were
used for each voice [15, 16, 17]. To evaluate the performance
of the system under all possible gender combinations, we
chose the following conversion directions: FS-MB, FG-FS,
ME-FG and MB-ME, where the first element of each pair
represents the source speaker (which provides the language
of the output voice) and the second one the target speaker
(which provides the speaker identity).

A total of 23 listeners participated in the test, 10 of which
were familiar with speech processing techniques. All of them
were fluent speakers of at least three of the languages of the
evaluation, namely Spanish, English and either Galician or
Basque, and were slightly familiar with the fourth one. Each
listener was presented, in random order, with 12 randomly
selected trios of samples (3 per conversion direction): source
speaker, target speaker and converted speaker. For each trio,
listeners were asked to give two opinion scores on a 5-point
scale: one score to punctuate how similar the third sample was
to the second one, and a second score to rank the quality of the
third sample in comparison with the first one. The evaluation
was conducted through a web interface, and listeners were
asked to use headphones.

Fig. 3 shows the similarity and quality DMOSs obtained
for each conversion direction, along with the corresponding

95% confidence intervals. Global average scores are provided
too. Remarkably, there are two pairs of voices for which the
results are particularly good (nearly 4 points in both perfor-
mance dimensions), while for the other two combinations the
performance was not that good (3 points or lower). The rea-
son for this dichotomy seems to be the quality of the syn-
thetic voice used as source in each case. Indeed, the quality
of the original female voices was higher than that of the male
voices due either to the careful manual segmentation of the
database (FS) or to the amount of training data (FG). This is
a valuable observation which, nevertheless, needs to be con-
firmed by more extensive experiments. Regarding the pair
with the lowest scores, namely MB-ME, it is worth mention-
ing that ME exhibited much larger logF0 variance than MB,
which probably contributed to the observed scores. It is also
worth considering that the way the output voice was shown
to the evaluators, i.e. preceded not only by a sample of the
target speaker’s voice but also by the same utterance in the
source speaker’s voice, may have produced an overall decre-
ment of the similarity scores, as the linguistic and supraseg-
mental characteristics of the source voice are not modified.
As a general conclusion, we can state that there are at least
some voices, presumably high-quality voices, not necessarily
from the same gender, for which the proposed method gives a
satisfactory performance.

Fig. 3. DMOS results (examples at http://goo.gl/FwemL4).

4. CONCLUSION

In this paper we have described a new method for cross-
lingual speaker adaptation. From two (source and target)
HTS voice models in different languages, the proposed algo-
rithm builds a third model that combines the language of the
source model with the speaker identity of the target model.
Since the method works on a purely segmental level, it does
not need any language-specific information. Perceptual tests
with different pairs of speakers (and languages) have shown
the potential of the method as long as the starting models are
good enough.
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