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ABSTRACT

This paper proposes a new training method of deep neural networks
(DNNs) for statistical parametric speech synthesis. DNNs are re-
cently used as acoustic models that represent mapping functions
from linguistic features to acoustic features in statistical parametric
speech synthesis. There are problems to be solved in conventional
DNN-based speech synthesis: 1) the inconsistency between the
training and synthesis criteria; and 2) the over-smoothing of the
generated parameter trajectories. In this paper, we introduce the
parameter trajectory generation process considering the global vari-
ance (GV) into the training of DNNs. A unified framework which
consistently uses the same criterion in both training and synthesis
can be obtained and the model parameters are optimized for pa-
rameter generation considering the GV in the proposed method.
Experimental results show that the proposed method outperforms
the conventional method in the naturalness of synthesized speech.

Index Terms— Speech synthesis, statistical model, neural net-
work, trajectory model, global variance

1. INTRODUCTION

Statistical parametric speech synthesis has grown in popularity in
the last decade [1]. In statistical parametric speech synthesis, rela-
tion between acoustic features (e.g., spectral and excitation features)
and linguistic features (e.g., phonetic, syllabic, and grammatical fea-
tures) is modeled by statistical models, which are generally called
acoustic models. Effective acoustic modeling is one of the most crit-
ical problems for statistical parametric speech synthesis.

Hidden Markov models (HMMs) have been widely used as
acoustic models in statistical parametric speech synthesis [2].
Acoustic features and duration of speech are simultaneously mod-
eled with HMMs [3] and decision tree based context clustering [4] is
widely used to effectively handle linguistic features in HMM-based
speech synthesis. Smooth speech parameter sequences, i.e., trajec-
tories, can be generated by using dynamic features as constraints
[5]. However, synthesized speech sounds muffled and the quality of
the synthesized speech still does not reached that of natural speech.
Recently, deep neural networks (DNNs), which are feed-forward
artificial neural networks with many hidden layers, have achieved
significant improvement in automatic speech recognition [6]. Mo-
tivated by the success of DNNs in speech recognition, DNNs have
been introduced to statistical parametric speech synthesis [7, 8, 9].
A single DNN is trained to represent the mapping function from lin-
guistic features to acoustic features, which is modeled by decision
tree-clustered context dependent HMMs in HMM-based approach.
In the generation process of DNN-based speech synthesis, the lin-
guistic features extracted from given text to be synthesized are
mapped to acoustic features by the trained DNN. DNN-based acous-
tic models can represent complex mapping functions from linguis-
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tic features to acoustic features and DNN-based speech synthesis
shows the potential to produce more naturally-sounding synthesized
speech.

This paper focuses on two problems in DNN-based speech syn-
thesis: 1) inconsistency between the training and synthesis criteria;
and 2) over-smoothing of the generated parameter trajectories. In
the training process of DNNs, a frame-by-frame independence is
generally assumed and frame-level objective functions are widely
used to train DNNs. However, in the synthesis process, objective
functions with respect to static feature sequences is used to generate
speech parameter trajectories. Consequently, there is an inconsis-
tency between the training and synthesis criteria and DNNs are not
optimized for parameter generation. In addition, the static feature
vectors generated by the traditional generation process are usually
over-smoothed and this is one of the main factors causing the muffled
effect in statistical parametric synthesized speech. For improving
the synthetic speech quality, Toda and Tokuda [10] have introduced
a new criterion on a higher order moment called the global variance
(GV), which is the variance of the static feature vectors calculated
over a time sequence (e.g., over an utterance), into the parameter
generation process. It has been reported that synthetic speech quality
can be significantly improved by generating the parameter trajectory
while keeping its GV close to the natural one [10, 11].

To address these problems, in this paper, we introduce a tra-
jectory training method considering the GV, which has been pro-
posed for HMM-based speech synthesis [12], into the DNN train-
ing. DNNs are optimized in the sense of maximum likelihood sub-
ject to a constraint on the GV of the generated parameter trajec-
tory. Consequently, a unified framework which consistently uses
the same criterion in both training and synthesis is obtained and the
over-smoothing problem is alleviated. In this paper, the proposed
method is compared with the conventional DNN training method on
objective and subjective evaluations.

The rest of this paper is organized as follows. Section 2 and 3
describe statistical parametric speech synthesis based on DNNs and
the proposed training method, respectively. The experimental con-
ditions and results are given in Section 4. Concluding remarks and
future work are presented in Section 5.

2. STATISTICAL PARAMETRIC SPEECH SYNTHESIS
USING NEURAL NETWORKS

In statistical parametric speech synthesis using DNN-based acous-
tic models [7, 8, 9], a single DNN is trained to represent a map-
ping function from linguistic features to acoustic features including
spectral and excitation parameters with their dynamic features. In
the generation process, the linguistic features extracted from given
text to be synthesized are mapped to acoustic features by the trained
DNN using forward propagation. Figure 1 shows an overview of
generation procedures in DNN-based speech synthesis. Although it

ICASSP 2016



O
X
3

Mean parameters
for static & dynamic features Static feature seq.

L Parameter
generation

sisAjeuy
1 meL
[

5 -
—
g9 H
g3 —> —>
5 X L
(DE 1
w2 ||
s
. . Q
H H (o]
Q
— )
(]
> —
|| SPEECH

Neural network

Fig. 1. An overview of generation procedures in statistical paramet-
ric speech synthesis based on neural networks.

is possible to generate static acoustic features directly by the DNN,
it has been reported that the speech parameter trajectories generated
by the parameter generation algorithm considering explicit relation-
ship between static and dynamic features shows better performance
[13]. Therefore, in this work, the parameter generation is applied for
generating smooth speech parameter trajectories.

A speech parameter vector o, consists of a D-dimensional static
feature vector ¢; = [c;(1),...,c:(D)]" and their dynamic feature
vectors.

o =[c,AWe] APe[]T

(e))

The sequences of the speech parameter vectors and the static feature
vectors, which represent an utterance, can be written in vector forms
as follows

o:[oirw"»otT"":O;]T (2)
c:[cl,...,c;r7 c;]T 3)

where 7' is the number of frames included in an utterance. Relation
between o and c can be represented by o = W, where W is
a window matrix extending the static feature vector sequence c¢ to
the speech parameter vector sequence o. The optimal static feature
vector sequence is obtained by

¢ = argmax P(o|A\) = argmax N (Welp,X)=¢ 4)

where A is a parameter set and \V(+|p, 2) denotes the Gaussian dis-
tribution with a mean vector p and a covariance matrix 3. The mean
vector p and the covariance matrix 3 are given by

-
Y =diag[%1,..., 3¢, ..., 27 (6)

The optimal static feature sequence ¢ is given by

T -1 [
é:(W E‘W) W' ly=Pr o)
where
-1

P= <WT2’1W) , r=wW's 1y 8)
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As a result, smooth static feature trajectories can be obtained by us-
ing dynamic features as constraints. In DNN-based speech synthe-
sis, the mean vector at frame ¢, p, is obtained from a trained neural
network and a linguistic feature vector at time ¢, a¢, as follows:

pe = g(xi|[ANN) 9

where g(-|Ann) is a non-linear mapping function represented by a
neural network Ay . A covariance matrix is usually independent of
linguistic features, i.e., a globally tied covariance matrix 3 is used,
in DNN-based speech synthesis.

Assuming that outputs of a neural network are used as mean
parameters in a statistical model, a objective function can be defined
as

T
L =P(o]A) =N(o|p, =) = [[N(oe|p:, =) (10)

t=1
The parameter set A, which consists of the parameter of the neural

network and the covariance matrix 3, is optimized in the sense of
maximum likelihood as follows:

T
A= arg max P(o|A) = HN(ot\ut, 3y)

t=1

an

If an identity matrix is used as the covariance matrix, maximization
of the objective function L is equivalent to minimization of the con-
ventional frame-level mean square errors. The neural network can be
trained by standard back-propagation using the gradient of the mean
vector.

3. TRAJECTORY TRAINING METHOD CONSIDERING
GLOBAL VARIANCE FOR DNNS

3.1. Trajectory training

In the conventional DNN-based speech synthesis framework, al-
though the frame-level objective function is used for DNN training,
the sequence-level objective function is used for parameter genera-
tion. To address this inconsistency between training and synthesis, a
trajectory training method is introduced into the training process of
DNN .

The traditional likelihood function in Eq. (10) can be reformu-
lated as a trajectory likelihood function by imposing explicit rela-
tionship between static and dynamic features, which is given by
o = W [14]. The trajectory likelihood function of ¢ is then written
as

Lrrj = %P(o\)\) = P(c|\) = N(cle, P) (12)
where Z is a normalization term. Inter-frame correlation is modeled
by the covariance matrix P that is generally full. Note that the mean
vector € is equivalent to the generated static feature sequence shown
by Eq. (7).

The parameter set A is estimated by maximizing the trajectory
likelihood Lr,;. The gradients of mean vector & and covariance
matrix 3 can be calculated as follows

OLrrj -1 _
P R — 1
oM W(c—e¢) (13)
OLprj 1 T TyuT
51 72d1ag [W (P +cc cc \W
—2p(E—c) W] (14)



The parameters of neural network are updated by the back-propagation
algorithm using the gradient in Eq. (13). The computation of gradi-
ents for the parameters of the neural network in lower layers is the
same as the calculation of gradients for standard neural networks.
The covariance matrix X is iteratively updated using the gradient in
Eq. (14).

3.2. Trajectory training considering GV

To address the over-smoothing problem of generated parameter tra-
jectories, the concept of parameter generation considering the GV is
introduced into the training of DNNs. The proposed objective func-
tion Lgvrrj is given by

Lavrry = P(c|A)P(v(e)| X, A)""

=N(ele, P)N(v(0)|v(), 2.)""  (15)
where v(c) = [v(1),...,v(D)]" is a GV vector of the static fea-
ture vector sequence c. The GV vector is calculated utterance by
utterance as follows:

(cr(d) — (c(d)))® (16)

ce(d) amn

1 X

v(d) = T Z

t=1

1 T

(eld) = 7>

t=1

where d is an index of the feature dimension. The mean vector of

the probability density for the GV, v(é), is defined as the GV of

the mean vector of the trajectory likelihood function in Eq. (12),

which is equivalent to the GV of the generated parameters shown

by Eq. (7). The GV likelihood P(v(c)|A, Ay) works as a penalty

term to make the GV of the generated parameters close to that of the

natural ones. The balance between the two likelihoods P(c|\) and
P(v(e)|A, Ay) is controlled by the GV weight w.

The parameter set, which consists of the parameter of the neural
network and the covariance matrix 3, is estimated by maximizing
the proposed objective function Lgv7r;. The gradients of the mean
vector p and the covariance matrix 3 can be calculated as follows:

OLevrr _s -ty (e — &+ wPx) (18)
op
OLgvrry _1 . ée' —cc W'
omor _2d1ag[W(P +éee —cc \W
—2u(e—c)' W' + 20WPz(n—We)']

(19)

z=—2P,(c—(c)) 20)

P, =diag [Irxr ® (X, " (v(€) — v(c)))] @D

where @ is a Kronecker product. The neural network can be up-
dated trained by the back-propagation algorithm using the gradient
in Eq. (18). The computation of gradients for the parameters in lower
layers is the same as the calculation of gradients for standard neural
networks. The parameters are optimized so that the GVs of gener-
ated trajectories get close to the natural ones.

The optimal static feature vector sequence is determined by
maximizing the objective function LavTr; as follows:

¢ = argmax P(c|A)P(v(e)| A, Ay) (22)

Since this estimate is equivalent to the ML estimate by the basic pa-
rameter generation algorithm shown by Eq. (4), the basic parameter
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generation algorithm can be employed for the proposed framework.
Note that the basic algorithm is computationally much more efficient
compared to the parameter generation algorithm considering the GV
[10] that requires an iterative process.

3.3. Related work

The several training methods incorporated the parameter trajectory
generation have been proposed [15, 16, 17]. In these methods, neural
networks are optimized by minimizing sequence-level error between
parameter trajectories extracted from natural speech and generated
parameter trajectories. It is reported that the naturalness of syn-
thesized speech is significantly improved by employing the training
method using sequence-level error functions. Although these train-
ing methods are similar to the proposed training method, the differ-
ent objective function is employed for parameter optimization. The
objective function for the trajectory training Lr.; is defined as the
likelihood function of the static feature trajectory ¢ and parameter
generation process is included to represent the mean parameter. In
addition, inter-frame correlation is modeled by the covariance ma-
trix P. However, the training methods proposed in [15, 16, 17]
do not model covariance matrices. If an identity matrix is set to
the covariance matrix P in the trajectory likelihood Eq. (12), max-
imization of the trajectory likelihood is equivalent to minimization
of the sequence errors used in these works. Additionally, in the pro-
posed method, the parameter trajectory generation considering the
GV, rather than the traditional parameter trajectory generation, is in-
corporated into the training process. Thus, it is expected that the
proposed method alleviates the over-smoothing problem of gener-
ated parameter trajectories.

4. EXPERIMENTS

4.1. Experimental conditions

Japanese 503 utterances, which can be downloaded from HTS web
site', were used in these experiments. The contents of the data were
the same as the B-set of the ATR phonetically balanced Japanese
speech database [18]. The 450 utterances were used for training and
the remaining 53 utterances were used for testing. Speech signals
were sampled at 48 kHz. Feature vectors were extracted with a 5-
ms shift and the feature vector consisted of the 0-th through 49-th
mel-cepstral coefficients and a log Fy value. Mel-cepstral coeffi-
cients were extracted from the smoothed spectrum analyzed by the
STRAIGHT [19].
In these experiments, four systems were compared.

o HMM: Conventional HMM-based speech synthesis system

o DNN: Speech synthesis based on DNN trained by maximiz-
ing the objective function in Eq. (10)

e TrjDNN: Speech synthesis based on DNN trained by maxi-
mizing the objective function in Eq. (12)

o GVTrjDNN: Speech synthesis based on DNN trained by
maximizing the objective function in Eq. (15)

In HMM, HMMs modeled observation vectors consisting of 50
mel-cepstral coefficients, log Fp values, and their dynamic features
(delta and delta-delta). Five-state, left-to-right, no-skip hidden semi-
Markov models (HSMMs) were used. To model log £y sequences
consisting of voiced and unvoiced observations, a multi-space prob-
ability distribution (MSD) was used. The minimum description

Uhttp://hts.sp.nitech.ac.jp/



Table 1. Global variance distances and Mel-cepstral distortions (dB)
on test data.

HMM DNN TrjDNN GVTrjDNN
0.701  0.687 0.442 0.407
5.123  4.831 4.897 4.981

GVD
MCD

length (MDL) criterion was employed to determine the size of deci-
sion tree for context clustering [20]. The input feature for the DNN
used in DNN, TrjDNN, and GVTrjDNN was a 411-dimensional
feature vector, consisting of 408 linguistic features including binary
features and numerical features for contexts and three duration fea-
tures including duration of the current phoneme and the position
of the current frame. The output feature was a 154-dimensional
acoustic feature vector, consisting of 50 mel-cepstral coefficients, a
log Fy value, their dynamic features (delta and delta-delta), and a
voiced/unvoiced binary value. The input features were normalized
to be within 0.0-1.0 based on their minimum and maximum values
in the training data, and the output features were normalized to
have zero-mean unit-variance. The input and output features were
time-aligned frame-by-frame by well-trained HMMs. A single net-
work which modeled both spectral and excitation parameters was
trained. The architecture of the DNNs used in DNN, TrjDNN, and
GVTrjDNN was 3-hidden-layer with 1024 units per layer. The
sigmoid activation function was used in the hidden layers and the
linear activation function was used in the output layer. The weights
of the DNN used in DNN were initialized randomly, then they
were optimized by maximizing the objective function £ in Eq. (10).
The weights of the DNN used in TrjDNN were initialized by the
trained DNN in DNN, then they were optimized by maximizing
the objective function L7,;. The trained DNN in TrjDNN was
used as initial model for GVTrjDNN. The weights of GVTrjDNN
were optimized by maximizing the objective function Lgvrr; in
Eq. (15). For training the DNNs, a mini-batch stochastic gradient
descent (SGD)-based back-propagation algorithm was used. For Tr-
jDNN and GVTrjDNN, one utterance was used as one mini-batch
in SGD-based training. The GV weight w for GVTrjDNN was set
to 0.001%. The basic parameter generation algorithm was applied to
generate parameter trajectories for all systems.

4.2. Experimental results

To objectively evaluate the performance of the systems, the GV dis-
tance (GVD) for mel-cepstrum coefficients and the mel-cepstral dis-
tortion (MCD) were used. The GVDs were calculated by

GVD = (v(d) — 5(d)) 23)

Nl

Table 1 lists the objective evaluation results. The GVD results
show that TrjDNN achieved significantly lower GVD than HMM,
though DNN gave similar GVD to HMM. Additionally, GVTr-
jDNN further improved the GVD from TrjDNN. This result shows
that the over-smoothing problem was alleviated by employing the
trajectory training method considering the GV. Comparing the sys-
tems on the MCD, the DNN-based systems, DNN, TrjDNN, and
GVTrjDNN, outperformed HMM. However, GVTrjDNN showed
slightly worse MCD than TrjDNN and DNN. This result suggests
that the prediction of acoustic features was affected by using the

2The GV weight was decided from preliminaly experiments.
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Fig. 2. Mean opinion scores of the four speech synthesis systems.

proposed training method. This is because the DNN in GVTrjDNN
was optimized not only for the acoustic features but for the global
variance.

To evaluate the naturalness of the synthesized speech, a subjec-
tive listening test was conducted. The naturalness of the synthesized
speech was assessed by the mean opinion score (MOS) test method.
The subjects were twelve Japanese students in our research group.
Twenty sentences were chosen at random from the test sentences.
Speech samples were presented in random order for each test sen-
tence. In the MOS test, after listening to each test sample, the sub-
jects were asked to assign the sample a five-point naturalness score
(5: natural — 1: poor).

Figure 2 shows the subjective evaluation results. The DNN-
based systems, DNN, TrjDNN, and GVTrjDNN, outperformed
HMM, as shown in Figure 2. Comparing the DNN-based sys-
tems, TrjDNN and GVTrjDNN gave significantly higher MOS
than DNN. These results indicate that the naturalness of synthesized
speech is drastically improved by introducing the parameter gen-
eration process into the training of DNNs. Comparing TrjDNN to
GVTrjDNN, GVTrjDNN showed better score though the difference
from TrjDNN is not statistically significant. This could be because
the covariance matrix is independent of the linguistic features. It is
known that the covariance matrix affects the parameter generation
considering the GV. Therefore, more improvement is expected by
modeling covariance matrices depending on linguistic features with
mixture density networks [21].

5. CONCLUSIONS

In this paper, a trajectory training method considering the GV is pro-
posed for DNN-based speech synthesis. The proposed method solve
the inconsistency between training and synthesis criteria and the
over-smoothing problem. Experimental results show the proposed
method can alleviate the over-smoothing problem and improve the
naturalness of synthesized speech from a conventional DNN-based
system.

Future work will include some extensive experiments to com-
pare the proposed method with the parameter generation method
considering the GV and the other trajectory training methods [15,
16, 17]. In addition, we will apply the proposed training method to
speech synthesis based on mixture density networks [21].
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