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ABSTRACT

In previous work, a method to compensate the divergence between
the distributions of natural and generated modulation spectra (MS)
has been proposed for hidden Markov model (HMM) based speech
synthesis. This method can alleviate the over-smoothing effect
of parameter generation when mel-cepstral coefficients (MCC) are
used as spectral features. This paper further investigates the MS
compensation method for line spectral pairs (LSP). Four approaches
to extract MS from LSPs are implemented and compared. These
approaches calculate MS vectors using original LSP sequences, log
power spectra (LPS) derived from LSPs, MCCs derived from LSPs,
and MCCs derived from speech waveforms, respectively. Exper-
imental results show that the naturalness of synthetic speech gets
improved after MS compensation when LSPs are used as spectral
features for HMM modeling. The degree of improvement depends
on the type of spectral features for MS calculation significantly.
MCCs derived from LSPs are more suitable for MS compensation
than original LSPs and LPS derived from LSPs. Besides, using
MCCs derived from speech waveforms also achieves satisfactory
performance. This means that MS compensation can also be
implemented as a post-filter to synthetic waveforms which does not
rely on the type of spectral features and vocoders adopted in the
synthesis system.

Index Terms— Speech synthesis, hidden Markov model, mod-
ulation spectrum, line spectral pair

1. INTRODUCTION

Hidden Markov model (HMM)-based speech synthesis has become
a mainstream speech synthesis method in the last two decades [1, 2].
In this method, the spectral, F0 and segmental duration features are
modeled simultaneously within a unified HMM framework [1]. At
synthesis time, the acoustic features predicted from the estimated
HMMs are sent into a vocoder to reconstruct speech waveforms.
This method is able to synthesize highly intelligible and smooth
speech sounds [3, 4]. However, the quality of its synthetic speech
is degraded. One reason is that the generated spectral features are
over-smoothed due to the conventional maximum output probability
parameter generation algorithm [2].
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In order to alleviate the over-smoothing effect, many improved
parameter generation methods have been proposed, such as post-
filtering after parameter generation [4, 5], modifying the parameter
generation criterion by integrating a global variance (GV) model [6]
or minimizing model divergences [7], etc. Recently, the modulation
spectrum (MS) of an acoustic feature trajectory has been adopted as
a new measurement to effectively capture the over-smoothing effect.
A method of MS compensation has been proposed in [8] to alleviate
the over-smoothing effect of parameter generation. At training stage
of this method, the MS of natural feature sequences and generated
feature sequences are extracted and modeled by Gaussian distri-
butions respectively. At synthesis time, the divergences between
these two distributions are compensated by modifying the MS of
generated feature sequences. Experimental results show that this
method can improve the naturalness of synthetic speech effectively.
Further, the MS measurement has be successfully incorporated into
joint parameter generation [9] and trajectory training of HMMs [10].

All the work in [8, 9, 10] adopts mel-cepstral coefficients (MCC)
as spectral features for HMM training and MS calculation. Line
spectral pair (LSP) is another popularly used spectral feature in
HMM-based speech synthesis [4, 11]. Previous work on GV-based
parameter generation [12] shows that the effectiveness of some over-
smoothing measurements, such as GV, may depend on the type of
spectral features used to derive them. Therefore, it is worthwhile
to investigate the MS compensation method for HMM-based speech
synthesis using LSPs. Four different approaches are implemented
and compared in this paper. First, the conventional MS compensa-
tion method is applied to LSPs instead of MCCs directly. Second,
inspired by our previous work in [12], log power spectra (LPS)
derived from LSPs are used for MS calculation and compensation.
Third, the LPS derived from LSPs are further transformed into
MCCs for MS extraction. Fourth, a spectral-feature-independent and
vocoder-independent MS compensation method is proposed, where
the MCCs calculated from speech waveforms by short-time Fourier
transform (STFT) are adopted for MS calculation and compensation.
Experimental results demonstrate the superiority of calculating MS
from MCCs, which will also be discussed from the aspect of neural
mechanism for auditory perception in this paper.

This paper is organized as follows. Section 2 briefly reviews
the existing MS compensation method. Section 3 introduces our
proposed methods of MS compensation for LSPs. The experimental
results are given in Section 4 and Section 5 is the conclusion.

2. CONVENTIONAL MS COMPENSATION METHOD

For an acoustic feature sequence c = [c>1 , c>2 , ..., c>T ]> where T
is the number of frames, ct = [ct,1, ct,2, ..., ct,D]>, and D is the
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Fig. 1. Flowchart of the conventional MS compensation method.

dimension of feature vector at each frame, its MS is defined as

s(c) = [s(c)1, s(c)2, ..., s(c)D]> , (1)

where s(c)d = [s(c)d,1, s(c)d,2, ..., s(c)d,M ]> is the power spec-
trum of vector [c1,d, c2,d, ..., cT,d]

> calculated by 2M -point DFT.
The flowchart of the conventional MS compensation method

[8] is shown in Fig. 1. At training stage, the acoustic parameter
sequences of the sentences in the training corpus are first generated
using the estimated HMMs and the conventional parameter genera-
tion algorithm [2]. Then, an MS vector can be extracted from the
acoustic feature sequence of each natural and synthetic utterance
following (1). Finally, two Gaussian distributions

p(s(c)|λ(N)) = N
(

s(c);µ(N),Σ(N)
)
, (2)

p(s(c)|λ(G)) = N
(

s(c);µ(G),Σ(G)
)

(3)

are estimated using the natural and generated MS vectors, where
µ(N) = [µ

(N)
1,1 , ..., µ

(N)
D,M ]> and µ(G) = [µ

(G)
1,1 , ..., µ

(G)
D,M ]> are

mean vectors, Σ(N) = diag{(σ(N)
1,1 )2, ..., (σ

(N)
D,M )2} and Σ(G) =

diag{(σ(G)
1,1 )

2, ..., (σ
(G)
D,M )2} are diagonal covariance matrices.

At synthesis time, acoustic parameter sequences of the input
text are first generated using the estimated HMMs and the context
features extracted by text analysis. Then, the MS of generated
parameter sequences s(c) are calculated by DFT and the phase com-
ponents are also preserved. A post-filter is designed to modify s(c)
in order to compensate the divergence between the two estimated
distributions in (2) and (3). The modified MS s(c)′ is calculated as

s(c)′d,m = α

[
σ
(N)
d,m

σ
(G)
d,m

(
s(c)d,m − µ(G)

d,m

)
+ µ

(N)
d,m

]
+ (1− α)s(c)d,m, (4)

where α is an interpolation coefficient which controls the degree of
post-filtering. Using the modified MS s(c)′d,m and the preserved
phase spectra, the acoustic parameter sequences can be reconstruct-
ed. Finally, these sequences are sent into a vocoder to recover
speech waveforms. Experimental results in [8] show that this MS
compensation method is effective in alleviating the over-smoothing
effects and improving the naturalness of synthetic speech when
applied to MCC and F0 sequences.

Fig. 2. Flowchart of the proposed MS compensation method for
LSPs with LSP-to-LPS and LSP-to-MCC transformation.

3. MS COMPENSATION FOR LSPS

In this paper, we apply MS compensation to HMM-based speech
synthesis when LSPs are used as spectral features. After training
HMMs using LSPs as spectral observations, it is straightforward
to calculate MS from natural and generated LSP sequences and
apply the conventional MS compensation method introduced in
Section 2 to LSPs directly. The training and synthesis process is
the same as the one shown in Fig. 1. In our previous work on
GV-based parameter generation [12], modeling GV vectors of LPS
derived from LSPs achieved significantly better performance than
modeling GV vectors of LSPs directly. Here, we adopt similar idea
to investigate MS compensation for LSPs considering that GV can
be approximately considered as a simplified representation of MS
[8]. Three spectral features derived from LSPs or waveforms are
utilized for MS compensation in this paper.

3.1. LPS derived from LSPs

The training and synthesis process of this method is shown in Fig.
2. At training time, the LSPs extracted from natural recordings and
the LSPs generated from estimated HMMs are firstly transformed
into log power spectrum (LPS) sequences according to the definition
of LSPs [12]. The LPS of one frame is a K-dimension spectral en-
velope where K is the number of sampling points within frequency
range [0, π]. Then, MS vectors are calculated from these derived
LPS sequences following the method introduced in Section 2 and
the distributions of natural and generated MS can be estimated. At
synthesis time, predicted LSPs are converted into LPS at first. The
MS of these derived LPS are modified according to (4). Finally, new
LPS parameters are reconstructed from the modified MS, and are
converted back into LSPs or sent into vocoder directly for waveform
synthesis.

3.2. MCCs derived from LSPs

Using MCCs derived from LSPs for MS compensation is similar
to using LPS derived from LSPs and follows the flowchart in Fig.
2. The difference is that LSPs are converted into MCCs instead of
LPS for MS calculation. The conversion from LSPs to MCCs is
achieved by first transforming LSPs into LPS and then transforming
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Fig. 3. Flowchart of the proposed MS compensation method using
MCCs derived from speech waveforms.

LPS into MCCs. The latter one is achieved by applying DFT to
frequency-warped LPS and preserving the first N dimensions of the
DFT outputs.

3.3. MCCs derived from speech waveforms

Here, MCCs derived from speech waveforms are used as the spectral
features for MS calculation. Its aim is to achieve an MS compensa-
tion method which is independent on the type of spectral features
and vocoders used in HMM-based speech synthesis. The flowchart
of this method is shown in Fig. 3. At training time, each sentence
in the training corpus is synthesized using the natural segmental
durations, natural F0 features and generated LSPs. STFT analysis
is applied to the waveforms of each natural and synthetic utterance.
Then, MCCs are extracted from the log amplitude spectrum of each
frame by frequency warping and DFT. The first N dimensions of
the DFT outputs compose the MCC vector at each frame. These
MCCs are used for MS calculation and distribution estimation. At
synthesis time, MS compensation is implemented as a post-filter to
the synthetic waveforms as shown in Fig. 3. Being consistent with
the training process, MCCs are extracted from synthetic waveforms
through STFT analysis. The phase spectra of STFT are also
preserved. The MS of extracted MCCs are modified according to (4)
and then used to reconstruct MCC sequences and amplitude spectra
of speech. These modified amplitude spectra are combined with the
preserved phase spectra to reconstruct speech waveforms by short-
time Fourier synthesis [13].

4. EXPERIMENTS

4.1. Experimental Conditions

Two American English speech databases (male speaker RMS and
female speaker SLT in CMU ARCTIC databases [14]) were used in
our experiments. For each database, 1076 utterances were used for
model training and the remaining 56 utterances were used for test.
The waveforms were in 16 kHz PCM format with 16 bit precision.
The acoustic features used for training HMM-based systems were
composed of F0, spectral parameters, and their delta and acceleration

Table 1. Configuration of systems in our experiments.

System
Name

Spectral
Features

Post Filtering

MCC BS MCC none
MCC MS MCC conventional MS compensation [8]
LSP BS LSP none
LSP PF LSP formant enhancement [4]
LSP MS LSP conventional MS compensation [8]
LPS MS LSP MS compensation using 513-order

LPS derived from LSPs
MCC40 MS LSP MS compensation using 40-order

MCCs derived from LSPs
MCC513 MS LSP MS compensation using 513-order

MCCs derived from LSPs
WAV MS LSP MS compensation using 513-order

MCCs derived from waveforms

components. STRAIGHT [15] was adopted as the vocoder to extract
acoustic features and to reconstruct speech waveforms.

For each speaker, nine systems were constructed and compared
in our experiments.1 These systems adopted either 41-order MCCs
or 40-order LSPs plus a gain dimension as spectral features for
HMM modeling. Different post-filtering techniques were adopted
by these systems. The detailed configurations of these systems are
shown in Table 1. For calculating MS from parameter sequences,
the FFT length was set to 2M = 4096 according to the maximum
length of utterances in the training corpus. In the WAV MS system,
Hamming window was used for STFT analysis. The FFT length of
STFT analysis was 1024. The frame length and frame shift was set
to 20 ms and 5 ms respectively. After heuristic parameter tuning,
the interpolation coefficient α in (4) was set to 0.85 for LPS MS,
MCC40 MS, and MCC513 MS systems, and was set to 1.0 for other
systems using MS compensation.

4.2. Subjective Evaluation

The first experiment evaluated the systems using LSPs as spectral
features and applying MS compensation. The listening test was
conducted by crowdsourcing on Amazon Mechanical Turk (AMT)2

with anti-cheating considerations [16]. 10 sentences were randomly
selected from the test set and were synthesize by LSP BS, LSP MS,
LPS MS, MCC40 MS, MCC513 MS, WAV MS systems of each
speaker. A MUSHRA test [17] was conducted to evaluate the
naturalness of these systems for each speaker. 20 English-native
listeners took part in the tests by rating the utterances synthesized by
all systems in parallel using a scale from 0 to 100. Natural recordings
were used as reference stimuli. The average naturalness scores of
all systems are calculated and shown in Fig. 4. Results of paired
t-test show that the differences between every pair of systems are
significant at 0.05 significance level for both speakers, except the
differences among MCC40 MS, MCC513 MS and WAV MS systems
for speaker SLT. Comparing LSP BS with LSP MS in Fig. 4, we can
see that the naturalness of synthetic speech can be slightly improved
if we apply MS compensation to LSPs directly. On the other hand,
the LPS MS, MCC40 MS, and MCC513 MS systems achieved much

1Some demos of speech synthesized using these systems can be found at
http://home.ustc.edu.cn/~sunxh06/LSP MS/demo.html.

2http://www.mturk.com/
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Fig. 4. The average naturalness scores of different systems and their
95% confidence interval for (a) speaker RMS and (b) speaker SLT.

better performance than LSP MS. This indicates that the effect of
MS compensation depends on the type of spectral features used for
MS calculation. Using MCCs derived from LSPs achieved the best
performance for both speakers. For speaker RMS, using higher MCC
orders led to better naturalness score. One possible reason is that
using 40-order MCCs may lose some details of LPS, especially for
the low-frequency band of male speakers. Using MCCs derived from
speech waveforms for MS calculation also worked well. For speaker
SLT, WAV MS is one of the best systems.

Our second experiment compared MCC BS, MCC MS, LSP BS,
LSP PF, and MCC513 MS systems by a MUSHRA test, where
MCC513 MS achieved the best performance in previous experiment.
The evaluation conditions were the same as previous one and the
results are shown in Fig. 5. Results of paired t-test show that the
differences between every pairs of systems are significant at 0.05
significance level for both speakers. We can see that using LSPs as
spectral features led to better naturalness of synthetic speech than us-
ing MCCs in the baseline systems. This is consistent with the results
of previous work [18]. Comparing LSP PF with MCC513 MS, we
can see that applying MS compensation to the MCCs derived from
LSPs can achieve better post-filtering performance than the formant
enhancement algorithm for LSPs [4]. Furthermore, MCC513 MS
also had higher naturalness score than MCC MS, which adopted
MCCs for both spectral modeling and MCC compensation.

4.3. Discussions

Fig. 4 shows MCCs are more suitable for MS compensation
than LSPs and LPS. One possible reason is the similarity between
the calculation of MS for MCCs and neural properties of the
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Fig. 5. The average naturalness scores of different systems and their
95% confidence interval for (a) speaker RMS and (b) speaker SLT.

primary auditory cortex (A1). Previous work on measuring Spectro-
Temporal Response Fields (STRF) of mammalian A1 cells [19, 20]
shows that an A1 cell is usually selective to a broadband signal
whose spectro-temporal envelopes are sinusoidally modulated with
particular modulation parameters [21]. This means the STFR of an
A1 cell can be considered as a filter specific to a particular range of
spectral and temporal modulation frequencies. This is similar to the
process of calculating MS of MCCs, which consists of two Fourier
transforms to speech spectrogram along frequency and temporal
axes respectively. The transformation along frequency axis converts
warped LPS into MCCs. The transformation along temporal axis
derives MS from MCC sequences.

The WAV MS systems of both speakers achieved satisfactory
performance in our experiment. This demonstrates the feasibility
of implementing the idea of MS compensation in a spectral-feature-
independent and vocoder-independent way. The conventional MS
compensation method only works on spectral parameters, which
ignores the effect of excitation on the MS of synthetic speech as
discussed in [22]. Using MCCs derived from speech waveforms for
MS compensation provides an alternative to avoid this issue.

5. CONCLUSIONS

This paper explores the MS compensation method for HMM-based
speech synthesis when LSPs are used as spectral features. The effec-
tiveness of compensating the MS of LSPs and other spectral features
derived from LSPs are evaluated by subjective evaluation, which
shows the superiority of adopting MCCs for MS compensation.
An MS compensation method using MCCs derived from speech
waveforms has also been proposed to achieve MS compensation in
a spectral-feature-independent and vocoder-independent way. To
extend current work from MS compensation to joint parameter
generation and to develop more perception-related features based on
MS will be the tasks of our future work.
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