
SOURCE MODELING FOR HMM BASED SPEECH SYNTHESIS USING INTEGRATED LP
RESIDUAL

Nagaraj Adiga and S. R. Mahadeva Prasanna

Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati
{nagaraj,prasanna}@iitg.ernet.in

ABSTRACT

In this work, new method of source modeling for HMM based

speech synthesis is proposed using integrated LP residual (ILPR).

The nature of ILPR waveform resembles the glottal flow derivative

signal and may keep the speaker characteristics in a better way.

The ILPR signal is modeled in the frequency domain by dividing

the spectrum into two bands to characterize harmonic and noise

components of the voice speech segment. The harmonic compo-

nents of ILPR signals below the maximum voiced frequency (fm) is

modeled using mel-cepstral coefficients called as RMCEPs, whereas

noise component above fm is modeled by pitch adaptive triangular

noise envelope weighted by the strength of excitation (SoE). The

RMCEPs and SoE are modeled on the HMM framework along with

MCEPs and F0 representing vocal tract information and fundamen-

tal frequency, respectively. The synthesized speech by the proposed

source modeling reduces the buzziness and improves the speaker

similarity compared to the conventional impulse / noise and mixed

excitation source modeling and comparable with STRAIGHT based

excitation. This is further reflected in both objective and subjective

valuations.

Index Terms: Integrated LP residual, residual MCEPs, source mod-

eling, SoE, HTS

1. INTRODUCTION

The HMM based speech synthesis system (HTS) is quite popular in

the modern day speech synthesizer due its small footprint and flexi-

bility. However, the main limitation of HMM based speech synthe-

sis is the vocoder framework due to which synthesis quality is still

lagging behind the unit selection speech (USS) synthesis [1]. The

vocoder compactly represents the acoustic phoneme units and recon-

structs phoneme units from such a compact representation. There-

fore, vocoder framework is very significant and it can influence the

overall voice quality. In the initial version of the HTS, two state

source-filter model is used with simple periodic pulse-train or white

Gaussian noise as an excitation for source modeling, which generally

gives a buzzy quality to the generated speech [2]. Subsequently, a

range of high quality vocoders [3, 4, 5] has been suggested to allevi-

ate this problem. Most of these methods focused on improved exci-

tation schemes such as mixed excitation or residual excitation, using

some compact representation of excitation, which can be trainable

parameters for modeling. Specifically, the STRAIGHT vocoder [6]

cannot be integrated with HMMs directly, because it has a large
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authors wish to thank Prof. Keiichi Tokuda and Prof. Hideki Kawahara for
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number of parameters. Therefore, Zen et al. [7] proposed to con-

vert the features into mel-cepstral coefficients and band aperiodicity

in order to use STRAIGHT with HTS. In case of residual excitation,

the residue is modeled using voiced and unvoiced filter parameters

trained by closed loop analysis [8].

The primary motivation of this paper is modeling the actual glot-

tal flow derivative signal to enhance the naturalness and improve the

speaker similarity of the synthesized speech. However, in practice it

is challenging to model the source signal. This may be because the

source signal in case of voiced speech consists of a harmonic struc-

ture in a low-frequency band representing periodic component and

noise component in the high-frequency band due to the turbulence

of the glottal airflow. There are some attempts to model the resid-

ual signal, which is an approximated source signal, for HMM based

speech synthesis. In [3], the residual signal is modeled as harmonic

component and noise component, representing the deterministic and

stochastic (DSM) part of the source signal, respectively. The spec-

trum of the residual signal is divided into two bands separated by the

maximum voiced frequency fm. The lower band below fm is mod-

eled by processing pitch-synchronous residual frames and keeping

it as codebooks. The stochastic component above fm is modeled

by random noise with its shape is weighted by pitch adaptive trian-

gular window. In GlottHMM, glottal pulses are extracted from real

speech via iterative adaptive inverse filtering and stored as a library

of pulses, resulting in improved the synthesis quality [9]. However,

storing codebook or glottal pulses need separate memory and a com-

plex optimized algorithm is required to select the codebook or glottal

pulses for creating excitation [10].

In this work, the actual source signal itself modeled in HMM

by parametrization of the source signal. The integrated LP residual

(ILPR) is used as a source signal and its time domain waveform is

similar to the glottal flow derivative signal [11]. The ILPR signal

is parametrized using Mel-cepstral coefficients (MCEPs). However,

MCEPs capture only the harmonic content of the ILPR signal and to

capture the aperiodic or stochastic component, noise modeling has

to be done. Hence, in this work the harmonic noise model (HNM)

approach is used to model the spectrum of the ILPR signal by di-

viding its spectrum into two bands. The lower band representing

the harmonic components is modeled by MCEPs instead of keeping

codebooks whereas the upper band representing noise component

is modeled by a triangular shaped random noise weighted by the

epoch strength, which represents the actual strength of random noise

around the epoch locations. The proposed source model is evalu-

ated by both subjective and objective evaluation and compared with

the impulse/noise, mixed, and STRAIGHT based excitation source

model.

The rest of the paper is organized as follows, proposed source

modeling for HTS using ILPR is described in Section 2. The integra-

tion of the proposed source modeling to HTS framework is explained
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in the Section 3. The experimental evaluation of proposed source

modeling and its comparison with other methods are described in

Section 4. The paper is finally concluded in Section 5.

2. SOURCE MODELING USING ILPR SIGNAL

This section describes modeling of the source signal using the ILPR

signal. Motivated by the fact that the voiced source signal consists of

both harmonic and noise component, ILPR signal is divided into two

bands, harmonic and noise component in frequency domain based

on voicing frequency (fm). In the ILPR signal of voiced speech, the

frequency component below the fm contains harmonic components,

whereas frequency component above fm contains the random noise

spectrum. Hence, the noise component also has to be modeled to

represent the ILPR signal fully. In the rest of the section, the nature

of the ILPR source signal and the need for the two band excitation

scheme for the ILPR signal into two bands is described.

2.1. ILPR signal

The source signal can be approximately separated from vocal-

tract response using LP-based inverse filtering on pre-emphasized

speech [12]. However, the residual source signal obtained still con-

tains high frequency components due to the pre-emphasis operation.

Alternatively, when non pre-emphasized speech (s[n]) is used dur-

ing the inverse filtering operation, the residual signal obtained is

called ILPR signal [11]. It is given by,

r[n] = s[n] +

p∑

k=1

aks[n− k] (1)

where ak are LP coefficients obtained from the LP analysis of pre-

emphasized speech and p is the order of the LP filter. The source sig-

nal obtained is similar to glottal flow derivative, having both quasi-

periodic nature and harmonic structure. Fig. 1(b) shows the ILPR

signal obtained after passing a non pre-emphasized speech through

the inverse LP filter. The signal looks similar to the DEGG signal,

which is shown in Fig. 1(a).

The ILPR source signal contains both periodic and aperiodic com-
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Fig. 1. Source signal representation of a speech segment of voiced

regions: (a) and (b) reference DEGG source signal and ILPR signal

for a same speech segment, respectively.

ponents in the voiced speech. Fig. 2(a) shows the ILPR signal for a

voiced speech segment having quasi-periodic waveform with noise

component embedded in it. Further, to know these two components,

the ILPR signal is passed through a low-pass and a high-pass filter

with a cut-off frequency of voicing frequency (fm= 4 kHz). The

low-pass and high-pass filtered ILPR signal is shown in the Fig. 2(b)

and (c), respectively. The low-pass filtered signal retains the peri-

odic nature of voiced signal and turbulence noise is de-emphasized

to some extent. The turbulence noise is preserved in the high-pass

filtered signal shown in Fig. 2(c). It can be observed that the high-

pass filtered ILPR signal consist of noise component synchronized

with pitch period of speech and having a variable amplitude due to

excitation around the epoch region. The epoch here corresponds to

the glottal closure and a small number of excitation instants around

them in voiced speech [13]. Due to these events being present in

the production of voiced speech, turbulence and frication noise are

partially produced at the time instants of opening and closing of the

vocal folds [13, 14].

Hence, in this work to make ILPR signal suitable for parametriza-

tion and then model in HTS, it is modeled with two components,

harmonic and noise. The harmonic component rh[n] represents the

periodicity in voiced speech and noise component rno[n] tries to

capture the aperiodic nature present in the voiced speech and it is

given by

r[n] = rh[n] + rno[n] (2)

2.1.1. Residual MCEPs representing harmonic component

To represent the harmonic structure of ILPR signal, the residual sig-

nal is divided into two bands in frequency domain based on voiced

frequency fm. The lower band of the residual signal below fm is

parametrized using MCEPs in frequency domain. The MCEPs ap-

proximates spectrum of signal in the frequency domain with very

small error and it is called as RMCEPs in this paper. It captures the

harmonic structure of the source signal. The value of voicing fre-

quency (fm) is fixed in this work to 4 kHz as mentioned in [15].

Moreover, here performance of harmonic representation of ILPR

signal using RMCEPs for the source modeling is shown rather than

the effectiveness of variable voiced frequency.
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Fig. 2. Periodic and noise component of the ILPR source signal

for voiced regions: (a) the ILPR source signal for a segment voiced

speech; (b) and (c) periodic and noise component of the ILPR sig-

nal obtained by low-pass filtering and high-pass filtering the ILPR

signal, respectively.

2.1.2. Noise component

The noise modeling of the ILPR signal rno[n] is followed similar to

noise modeling done in the HNM model [15]. In the HNM model, it

is assumed that white Gaussian noise b[n] is convolved with an auto-

regressive model q[n] and its time domain envelope is modulated by

weighting function w[n]:

rno[n] = w[n](q[n] ∗ b[n]) (3)
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where w[n] is the noise envelope, which is a pitch dependent trian-

gular function, trying to fit the noise component present in the ILPR

signal shown in the Fig. 2. Since, fm is fixed to 4 kHz in the pro-

posed method and also the spectrum of the ILPR signal is flat over

the entire frequency band, the auto-regressive model has assumed to

be having the same effect for all the frames. Hence, q[n] is consid-

ered as a high-pass filter (beyond fm) slightly attenuated in the very

high frequencies. In this work, instead of using the constant enve-

lope amplitude for triangular function, variable amplitude obtained

from the strength of excitation of the ILPR signal around the epoch

region is used as envelope amplitude.

2.1.3. Strength of Excitation (SoE)

In the voiced region, due to the rapid movement of vocal fold, sig-

nificant excitation occurs during the closing of the vocal fold. This

results in high strength in the source signal near the epoch loca-

tion. This can be observed Fig. 2(c), showing the high amplitude

around the epoch region for the noise component in the high-pass

filtered ILPR signal. Moreover, the amplitude of the noise compo-

nent around the epoch location is variable, so estimating this am-

plitude may help in representing noise component in a better way.

The strength near an epoch can be obtained from the ILPR signal

by passing it through the zero-frequency filter (ZFF) and taking the

slope of the filtered signal near the epoch location [16]. The strength

of excitation (se[k]) is defined as the slope of the ZFF signal (y[n])
given by:

se[k] = |(y[k + 1]− y[k])|, (4)

where k is the epoch location. se[k] gives the strength of the

impulse-like excitation at the epoch location. The SoE parame-

ter gives a variable amplitude to pitch adaptive triangular noise

envelope.

3. ILPR SOURCE MODELING FOR HMM BASED SPEECH

SYNTHESIS

The HMM based speech synthesis is experimented with publicly

available open source tool kit HTS [17]. In the base version of

the HTS, each phoneme is modeled with 5 states and in each state

4 streams are used to model the different features of phonemes.

The first stream is used for MCEPs and its derivatives, represent-

ing vocal-tract transfer function. The next three streams are used for

the fundamental frequency (F0), its delta, and delta-delta, respec-

tively, to represent the source information. Here, F0 is modeled in

Multispace distribution (MSD), which models, both voiced and un-

voiced regions in single model [18]. In this work, along with these 4

streams, RMCEPs and its derivatives are modeled in the fifth stream

to represent the harmonic component of the source signal and in the

last stream SoE and its derivatives are used, which gives the varying

amplitude to noise model. The voice / unvoiced decision to gener-

ate excitation is modeled by the weight of MSD, whereas duration

is modeled by a single Gaussian distribution for each state. The

number of speech parameters used in the training of HMM systems

per frame is summarized in the Table 1. To represent the harmonic

component, 20 RMCEPs parameters are used in the proposed source

model. In addition, one SoE parameter is used to represent the vary-

ing amplitude of noise component. During the synthesis, parameters

are generated by the maximum likelihood algorithm, as described

in [2]. The generated parameters are fed into a proposed vocoder to

produce the speech for a given text.

Table 1. Speech parameters used per frame for training the HTS
Feature Number of parameters

Fundamental frequency (F0) 1

Strength of excitation (SoE) 1

Residual mel-cepstral coefficients (RMCEPs) 20

Mel-cepstral coefficients (MCEPs) 35

3.1. Proposed source modeling using ILPR signal

A block diagram of the proposed source modeling using the ILPR

signal is shown in the Fig. 3. The impulse train is generated ac-

cording to F0 is passed through the low-pass filter and weighted

with the residual spectrum generated from RMCEPs to represent the

harmonic part of excitation. The noise component rno[n] is gener-

ated by high-pass filtering the white Gaussian noise and modulated

by a spectrum of pitch adaptive triangular envelope weighted by the

SoE. Both harmonic and noise components are added to the spec-

tral domain. The added spectrum of excitation is passed through the

Mel-Log Spectrum Approximation (MLSA) filter and then overlap-

added to obtain the synthesized speech. In case of unvoiced regions,

only white Gaussian noise is used as the excitation. The voice / un-

voiced decision is made based on the MSD weight of fundamental

frequency.

Fig. 3. The work flow of the source modeling using ILPR signal

4. EXPERIMENTAL EVALUATION

To evaluate the proposed vocoder, HTS system is built for two speak-

ers: SLT (US female) and BDL (US male). The speakers SLT and

BDL are taken from the CMU ARCTIC database available pub-

licly [19], which consist of 1132 sentences. The first 25 sentences

are used for testing and remaining 1107 sentences are used for train-

ing. The parameters proposed in the previous sections are analyzed

for a frame size of 25 ms with a frame rate of 5 ms and trained

in the HMM framework. For the comparison purpose, along with

the proposed method, 3 more systems, based on impulse / noise,

mixed, and STRAIGHT excitation source model is developed in the

HMM framework. In the impulse / noise source model, impulse

and white Gaussian noise are used as excitation, for voiced and un-

voiced speech, respectively. The mixed excitation is based on a
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simple two band excitation for voiced speech with low-pass filter-

ing the impulse train below the voicing frequency (fm=4 kHz) for

the lower band, whereas in the higher band white Gaussian noise is

high-pass filtered above the voicing frequency. In the STRAIGHT

based excitation, impulse excitation is convolved with bandpass fil-

ter weighted by aperiodic components with random phase is added

generated from fixed group delay is used as excitation [20]. In all

the systems, vocal-tract system is modeled by MCEPs computed on

the STFT spectrum of speech. The synthesized files for all the 4

methods can be accessed from the following link 1.

4.1. Subjective evaluation

In this evaluation, two tests are conducted, namely, comparative

mean opinion score (CMOS) and preference test (PT). In CMOS

test, 25 sentences which are not used in training are given to sub-

jects along with the original waveform and asked to give the mean

opinion score in the scale of 1 to 5. For evaluations, 10 people par-

ticipated and asked them to observe naturalness, speaker similarity,

and perceptual distortions present in each file and give their scores

accordingly. The average scores obtained from all the subjects are

given in the Table 2 along with standard deviation, which is com-

puted for scores present within a 95% confidence interval of the

mean. From the table, it can see that ILPR based source modeling

outperform the impulse / noise based source model. Moreover, the

proposed source model is slightly better than the mixed excitation

with CMOS of 3.11, which signifies the addition of the harmonic

and the noise component helped in improving the naturalness and

speaker similarity. Further, proposed method performs almost sim-

ilar to STRAIGHT based excitation. The slight degradation may be

due to the fact that random phase is not used in the proposed method

for excitation, whereas random phase component is added to the

excitation with the help of group delay in STRAIGHT method.

In addition, to know the distribution of score for male and fe-

male speaker bar chart is plotted in the Fig. 4. The bar plot shows

the CMOS with standard deviation of all the 4 systems. From the bar

plot, it can see that proposed method for female speaker is signifi-

cantly better than the mixed excitation, whereas, for male speaker

proposed and mixed excitation performs almost similarly. This is

due the fact that the number of RMCEPs parameter used for both

male and female speakers has a constant value of 20. For male

speaker, pitch period is high and more number of harmonics will

be present within voiced frequency, increasing the RMCEPs param-

eter may improve the synthesis quality, however, in this work only

fixed RMCEPs are used for comparison purpose. In the preference

test, for each sentence subject were asked to listen two system shuf-

fled randomly from 4 systems at a time and asked to choose any one

system or prefer none of them as their preference. The percentage of

preference scores can be viewed in Table 2. A clear improvement of

the proposed method over the traditional impulse / noise and mixed

excitation source model can be observed from the table, whereas it

perform equally effective with respect to STRAIGHT method.

Table 2. Subjective evaluation results of CMOS and PT
Experimental Source model using different types of excitation

Evaluation Impulse / noise Mixed STRAIGHT ILPR none

CMOS 2.31±0.28 2.96±0.23 3.15±0.15 3.11±0.17 -

9% - - 85% 6%
PT - 32% - 61% 7%

- - 45% 42% 13%

1:http://www.iitg.ernet.in/cseweb/tts/tts/

Assamese/ilprhts.php
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Fig. 4. Average CMOS of 4 HTS systems, impulse / noise, mixed,

STRAIGHT and ILPR,respectively,for SLT and BDL speaker

4.2. Objective evaluation

In this work, two objective measure is used, namely, perceptual

evaluation of speech quality (PESQ) and log spectral distance

(LSD) [21]. The PESQ measure should be interpreted as a MOS

regarding the similarity to the original waveform. The PESQ scores

obtained for 4 types of source modeling are tabulated in the Table 2.

It can be observed from the table that proposed ILPR based source

model having a relatively low PESQ score of 1.45 with the standard

deviation of ±0.04. However, even the scores obtained by the im-

pulse and mixed excitation source model itself are relatively lower

than the proposed excitation, which signifies the improvement in the

synthesis quality of the proposed method. The STRAIGHT method

performed slightly better than the proposed method, this is due to the

fact that phase information is also modeled in STRAIGHT, which is

ignored in the proposed method.

The second objective evaluation is the LSD measure, which

gives the distortion error in the spectral domain. Note that the distor-

tion is normalized and lower values indicate smaller distortion and

better the synthesis quality. This measure is evaluated between the

original speech and the synthesized speech for the same text. The

average LSD for all the 4 source model are given in Table 2 along

with standard deviation. The LSD of the proposed excitation is

lesser with distortion of 2.01, indicating the better spectral modeling

of the proposed method comparable to that of impulse and mixed

excitation. Whereas it performed almost equal with STRAIGHT

method.

Table 3. Objective evaluation results of PESQ and LSD
Experimental Source model using different types of excitation

Evaluation Impulse / noise Mixed STRAIGHT ILPR

PESQ 1.21±0.03 1.32±0.04 1.47±0.05 1.45±0.04

LSD 2.20±0.24 2.13±0.25 2.01±0.23 2.03±0.24

5. CONCLUSION

This paper proposes the source modeling for HMM based speech

synthesis using ILPR signal. The source modeling is done by di-

viding the spectrum of an ILPR signal into two bands, harmonic

and noise component. The harmonic component is represented

by RMCEPs and the noise component by SoE weighted triangular

shaped random noise. The proposed ILPR excitation source model

is compared with impulse, mixed, and STRAIGHT excitation source

modeling. Through the subjective and objective tests, the proposed

method was shown to clearly outperform the base version of the HTS

system and mixed excitation source model both in terms of natu-

ralness and speaker similarity, gave an almost similar performance

with STRAIGHT method. Future work, may focus on modeling

more details of the phase information of the excitation signal.
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