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ABSTRACT

Using bottleneck features extracted from a deep neural network
(DNN) trained to predict senone posteriors has resulted in new,
state-of-the-art technology for language and speaker identification.
For language identification, the features’ dense phonetic information
is believed to enable improved performance by better representing
language-dependent phone distributions. For speaker recognition,
the role of these features is less clear, given that a bottleneck layer
near the DNN output layer is thought to contain limited speaker in-
formation. In this article, we analyze the role of bottleneck features
in these identification tasks by varying the DNN layer from which
they are extracted, under the hypothesis that speaker information is
traded for dense phonetic information as the layer moves toward the
DNN output layer. Experiments support this hypothesis under cer-
tain conditions, and highlight the benefit of using a bottleneck layer
close to the DNN output layer when DNN training data is matched
to the evaluation conditions, and a layer more central to the DNN
otherwise.

Index Terms— Bottleneck Features, Deep Neural Networks,
Speaker Recognition, Language Recognition

1. INTRODUCTION

Recently, deep neural networks (DNNs) have been applied to many
speech applications. In this work, we focus on the tasks of speaker
identification (SID) and language identification (LID) using features
extracted from a DNN. Specifically, we analyze bottleneck (BN) fea-
tures extracted from a 5-layer DNN trained to discriminate tied tri-
phone states (also referred to as senones), as typically used in auto-
matic speech recognition (ASR) systems [1].

Research has shown that bottleneck features are perhaps the
most effective feature for LID [2, 3]. And when combined with Mel
frequency cepstral coefficients (MFCCs), they result in one of the
most powerful combined features for SID [4, 3]. Though these fea-
tures are extremely useful for both the SID and LID task, the role of
the bottleneck output representation has not been deeply explored.
For example, LID is thought to benefit from the dense phonetic con-
tent represented in the bottleneck features extracted from a layer
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close to the DNN output layer where phone-discriminative informa-
tion should be most salient. In contrast, such BN features are as-
sumed to be somewhat speaker-independent (relative to the features
that are input to the DNN), and yet they still greatly assist SID [4, 3].
This finding is particularly true when the BN features are combined
with traditional SID features such as MFCCs. One hypothesis is the
bottleneck features provide information that enables the universal
background model (UBM) to better align frames to phonetic content
rather than to the clusters formed purely based on acoustic sounds.
In doing so, speaker-dependent pronunciations can be leveraged to
improve SID comparisons. In both SID and LID, the actual impact of
the bottleneck feature and its relative balance between phonetic and
speaker information (extracted closer to, or farther from, the output
layer, respectively) has yet to be quantified with respect to detection
performance.

In this analysis study, we aim to demonstrate how the pho-
netic information contained in bottleneck features impacts the per-
formance of both SID and LID. To this end, we vary the position
at which the bottleneck layer is placed, to understand the impact of
trading contextualized filter energy information toward the start of
the network for phonetic information at the end of the network. We
evaluate the sole use of bottleneck features in both the SID and LID
task. For SID, we also evaluate feature-level fusion of BN features
and MFCC features, with the MFCCs appended with deltas and dou-
ble deltas. Additionally, we subset results for meaningful analysis
over a variety of datasets to observe language-dependence and per-
formance under mismatched train vs. test conditions and duration.

2. BOTTLENECK FEATURES FOR DETECTION TASKS

Several methods of using DNNs for SID and LID have been pub-
lished in literature. These include DNN-based i-vectors [1, 2],
DNN-posterior features [5, 2], and, more recently, bottleneck fea-
tures [6, 7, 8]. The former methods use the output layer of the DNN
to aid in detection, while the bottleneck features are extracted from
a layer prior to the output layer. Given that previous comparisons
of these approaches have led to the conclusion that the BN-based
approach gives the best results [4] and [2], this study will be con-
strained to bottleneck features extracted from a DNN trained to dis-
criminate tied tri-phone states (senones).

This section provides a brief overview of bottleneck features and
how they are applied in both SID and LID tasks.

2.1. Bottleneck Feature Extraction

Bottleneck features [6, 7, 8] are a set of activations of nodes over
time from a bottleneck layer in a trained DNN. The bottleneck layer
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is a hidden layer in the DNN of reduced dimension relative to the
other layers (i.e., 80 nodes compared to 1200 in this work). This
DNN can be trained to discriminate between different output classes
such as senones, speakers, conditions, etc. Using a bottleneck layer
in the DNN ensures that all information required to ultimately deter-
mine the posteriors at the DNN’s output layer is restrained to a small
number of nodes. When the DNN is trained to predict senone pos-
teriors at its output layer, the features extracted as activations of the
nodes in the bottleneck layer lend themselves well to tasks in which
phonetic content is beneficial, such as LID. Consider now that the
position of the information bottleneck (or bottleneck layer) can be
close to the input layer, where the phonetic information in the result-
ing features is assumed to be relatively low compared to that of a
bottleneck layer placed close to the output layer (assuming the DNN
classes are senones or other phonetic units). In this work, we fo-
cus on how the position of the bottleneck layer affects LID and SID
performance in order to help understand the role they play in these
detection tasks.

2.2. Language Identification Using Bottleneck Features

Determining the spoken language from audio can typically be
broken down into two methodologies: phonotactic and acoustic.
Phonotactic approaches attempt to model the permissible combina-
tions of phones and their frequencies in the languages of interest.
Many phonotactic approaches involve collecting the probabilities for
phone sequences as a representation of the signal by using the out-
put of one or several open-phone loop recognizers [9, 10, 11]. Lan-
guage models or support vector machines are then used to generate
the final scores. Another phonotactic approach uses the phoneme
posteriogram counts from the phone recognizer to create bigram
conditional probabilities, which are then used to create features for
LID (e.g., [12]). These phonotactic approaches work with a rela-
tively small set of units (approximately 50) representing the individ-
ual phones of the language being modeled. Information about the
frequency of different phone sequences is collected through n-gram
generation. Acoustic approaches directly model the acoustic features
such as MFCCs rather than trying to explicitly determine sub-units
of what was spoken [13].

Bottleneck features provide a middle-ground between the two
main approaches to language identification, since the information
required to obtain senone posteriors is contained in the bottleneck
activations. However, the meaning of each node is obscure. A ma-
jor benefit of bottleneck features in LID over most phonotactic ap-
proaches is the ability to use them in long-standing, robust modeling
techniques, such as the i-vector framework [13], followed by simple
classifiers, such as the Gaussian backend or a neural network. In
recent literature, bottleneck features extracted from DNNs were suc-
cessfully applied to language identification in [6], with later works
supporting the strength of these feature in severely degraded audio
conditions [7, 8, 2].

2.3. Speaker Identification Using Bottleneck Features

Strictly speaking, bottleneck features extracted from a DNN trained
for ASR should be relatively speaker-independent, as this enables
for better senone prediction across all speakers. In light of this,
one pressing question is why bottleneck features are suitable for
speaker recognition at all. In [4], for example, they were shown
to outperform MFCCs for SID under ideal conditions. In the same
work, when combined with MFCCs on a feature level, they set a
new state-of-the-art performance level on the National Institute for

Standards and Technology (NIST) Speaker Recognition Evaluation
(SRE) 2012. One hypothesis as to why bottleneck features con-
tribute to speaker recognition in this feature-fusion approach is that
they provide assistance to the UBM during unsupervised clustering,
such that the components of the UBM align better with phonetic
units (senones) compared to when purely based on acoustic sound.
In turn, this improved alignment provides a better basis for exploit-
ing pronunciation differences in the SID system. We attempt to sup-
port this hypothesis by showing through a series of experiments in
Section 4 that moving the bottleneck layer toward the DNN output
layer reduces the speaker information available to SID.

3. EXPERIMENT PROTOCOL

In this work, we trained several DNNs and used them to extract
BN features for both the SID and LID experiments. In all experi-
ments, speech activity detection (SAD) was based on 13-D MFCC
features contextualized with deltas and double deltas, and modeled
using 128-component Gaussian mixture models (GMMs) for both
speech and non-speech. A median filter of 21 frames was used to
smooth the SAD output before applying a threshold.

3.1. Extraction of Bottleneck Features

A 5-layer DNN was initially trained without a bottleneck layer by
using 1200 nodes in each hidden layer to predict 3494 senone out-
puts. This DNN served as a initial DNN from which a selected hid-
den layer (1 through 5) was randomly re-initialized, and the DNN
retrained to convergence, to obtain the bottleneck layer for the SID
and LID experiments. The input features for the DNN consisted of
40 log Mel filter bank energies along with the energies from seven
frames either side of a frame for a contextualized feature of 600 di-
mensions. The DNNs were trained by using the same dataset as used
in [4]. Similarly, the input features were mean and variance normal-
ized over the full waveform to improve channel robustness.

3.2. Speaker Recognition Protocol

For speaker recognition, MFCCs were used both alone and fused
with BN features. These were 20-dimensional MFCCs contextual-
ized with deltas and double deltas. An i-vector/PLDA framework
was used throughout [14]. The UBM and i-vector subspace were
trained by using the non-degraded portion of the PRISM dataset [15].
All i-vectors were processed with mean and length normalization
and LDA prior to PLDA. Both LDA and PLDA were trained us-
ing the previously mentioned dataset along with a subset of micro-
phone recordings corrupted with noise, reverb, and audio compres-
sion to obtain additional robustness to these artifacts per [16]. Eval-
uation data consisted of part 1 (short sentences) of the RSR2015
dataset [17] to analyze speaker recognition for matched or different
prompts and prompt identification, and a subset of conditions from
the 14-condition Evaluation Corpus used in [18] to enable analysis of
text-independent SID for same- or cross-language trials under mixed
channel conditions.

3.3. Language Recognition Protocol

For language recognition, the BN features were extracted from the
range of aforementioned DNNs. Based on our previous work in [2],
we used an i-vector Gaussian Backend (GB) approach to LID. A
2048 Gaussian UBM and 400-D i-vector subspaces were used for
the evaluation of both Language Recognition Evaluation (LRE) 2009
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Table 1. The effect of varying the position of the BN layer in a
phonetic DNN from which features for LID were extracted for the
LRE’09 and RATS LID datasets and evaluated in terms of Cdet
across different test durations. Unlike the LRE’09 telephone data,
the RATS LID data is severely mismatched to the DNN training
conditions. Results from traditional MFCC-SDC features are also
presented for comparison. Layer 1 denotes the first hidden layer of
the DNN, while layer 5 denotes the last hidden layer.

System LRE’09 RATS
3sec 10sec 30sec 3sec 10sec 30sec

MFCC-SDC 14.8 5.7 3.3 28.9 18.3 12.7

BN Layer 1 13.5 6.2 4.0 24.1 16.4 10.3
BN Layer 2 11.9 5.1 3.0 25.2 15.6 9.3
BN Layer 3 9.3 3.4 1.9 25.9 15.0 8.9
BN Layer 4 8.9 2.8 1.6 28.4 17.1 9.4
BN Layer 5 9.2 2.9 1.7 26.9 15.5 9.1

and the RATS LID task. For LRE’09 experiments the system was
trained on development data consisting of around 50k target class ut-
terances. Approximately 40k i-vectors were then used to model the
23 target languages using a weighted GB as described in [2]. Sim-
ilarly, calibration was applied using cross-validation on the test set
with results reported in terms of the official LRE metric, Cdet [19].
For the RATS LID task, we used the same development datasets as
defined in [20] to model five target languages and an out-of-set class.
The RATS corpus [21] consists of retransmitted audio from eight
analog push-to-talk channels covering HF, VHF, UHF frequencies
and AM, FM and single-side band transmissions. This resulted in
high levels of channel distortion and wideband noise. All channels
except channel ”D” were used in this experiment. Results are also
reported in terms of Cdet.

4. RESULTS

The following analysis aims to observe the effect of bottleneck layer
position on the accuracy of SID and LID detection tasks. We com-
mence with LID experiments on the LRE’09 and RATS LID corpora,
followed by SID experiments on several corpora.

4.1. Language Recognition Experiments

We evaluated five different systems on the LRE’09 and RATS LID
datasets, corresponding to the five DNNs with the BN layer respec-
tively positioned at layers 1 through 5. Performance from these sys-
tems are presented in Table 1. Focusing first on the LRE’09 re-
sults, a trend of improved LID performance as the bottleneck layer
moves from layer 1 to layer 4 is seen, with significant relative gain of
34–60%. This finding indicates that BN features extracted closer to
the phonetic DNN output layer provide improved LID performance
across all evaluated durations, thus demonstrating the benefit that
dense phonetic information brings to LID. Interestingly, a marginal
loss in performance exists between use of layer 4 and layer 5. This
finding might indicate that predicting the 3494-dimensional output
layer of the DNN directly from the 80 nodes in the BN layer is sub-
optimal. The presence of an intermediate hidden layer of size 1200
when the BN layer is at position 4 allows more flexibility in the
model to properly map 80 values to 3494 posteriors.

The conditions of LRE’09 and the DNN training dataset are
closely matched, which is likely a contributing factor to the signifi-

cant gains observed using bottleneck features with respect to tradi-
tional MFCC-SDC features. To evaluate the strength of this hypoth-
esis, the same experiments were run on the RATS LID dataset with
i-vectors being extracted from the same clean English DNNs, and a
RATS-specific UBM, i-vector extractor and GB. In this way only the
input features and speech activity components were mismatched to
the RATS conditions while the remainder of the system was tailored
toward RATS data. In contrast to LRE’09 results, we can observe
that use of a bottleneck layer closer to the DNN input layer (layer 2
or 3) is more suitable for the RATS data that is severely mismatched
to the DNN training set. We can also observe that, while still signif-
icant, the relative improvement over MFCC-SDC is 12-30%; about
half that observed for LRE’09. These results indicate that bottleneck
features extracted from a DNN trained on mismatched conditions are
still useful for the task of LID, although reducing mismatch should
provide additional performance gains.

4.2. Speaker Recognition Experiments

In the previous section, we showed that increasing the phonetic in-
formation in the bottleneck features, by using a layer close to the out-
put of the DNN, provided considerable improvements in LID perfor-
mance under conditions in which DNN training data matched those
of the evaluation data. In this section, we perform a similar analysis
for the SID task. This is of particular interest given the results in the
previous section and our hypothesis that the BN features contain less
speaker information as they move toward the output layer.

We start by focusing on text-independent SID by using part of
the 14-condition evaluation corpus previously used in [18] which is
a culmination of several different corpora for understanding the effi-
cacy of SID across many common conditions. From this corpus, we
evaluated three distinct conditions with results illustrated in Figure 1.
These conditions (from left to right) were English telephone record-
ings, cross-language telephone trials, and finally, cross-language and
cross-channel (cell vs. studio microphone) trials. In all examples, we
observe that BN+MFCC consistently outperforms the BN systems,
and in the majority of cases, it also outperforms the MFCC system.
The English telephone trials (left) show that a bottleneck layer cen-
tral in the DNN provides the best performance. In the cross-language
telephone trials of the middle plot, however, we observe two distinct
trends. First, using BN features alone dramatically increases SID er-
ror as the features become more phonetically-rich toward the output
of the DNN. This finding is expected in cross-language trials due
to the speaker using disjoint sets of senones between the two lan-
guages, providing the system with no common ground in which the
same speaker traits can be analyzed. In contrast, however, appending
MFCCs to BN features (BN+MFCC) appears to normalize this issue,
providing performance slightly better than that of the MFCC system,
irrespective of the BN-layer position. This finding tends to suggest
that BN features provide limited information for SID in the context
of cross-language trials when the channel between enrollment and
test is matched. The right plot then introduces cross-channel condi-
tions to the cross-language trials. Here, we observe similar trends
as the BN layer moves toward the DNN output layer. The perfor-
mance of the BN-only system is rather degraded compared to that
of MFCC, indicating a mismatch between the DNN training data
and the evaluation set. Additionally, the best-performing layer of
any system relying on BN features is layer 2, thus suggesting that a
BN+MFCC system with mismatched conditions between the DNN
training data and the expected evaluation data should use a BN layer
closer to the DNN input, to prevent this mismatch from degrading
SID performance.
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Fig. 1. The effect of varying BN layer position (1 and 5 denote
the first and last hidden layer, respectively) in a phonetic DNN
from which SID features were extracted for a subset of English
telephone trials (left), cross-language telephone trials (center), and
cross-channel, cross-language trials (right) of the 14-condition eval-
uation corpus previously evaluated in [18]. Baseline MFCC perfor-
mance is also shown with results reported in terms of Equal Error
Rate (EER).

4.3. Phonetic Dependence in Speaker Recognition

The final set of experiments focuses on speaker recognition under
text-dependent conditions, where using phonetically rich features
may be of particular benefit. For this purpose, we used part 1 of
the RSR2015 dataset involving short sentences, with a focus on two
conditions: 1) matched prompt and 2) different prompt trials. Fig-
ure 2 shows three plots. We first focus on the left and center plots,
which indicate the effect of changing the BN layer position for the
matched and different prompt trials, respectively. In contrast to the
previous datasets, we observe that a bottleneck layer situated at the
entry point of the DNN is most suitable for both conditions. Ap-
pending MFCC to the BN features is also consistently beneficial,
with BN+MFCC outperforming MFCC whenever the BN features
held limited phonetic information. This trend may be due either to
the DNN being mismatched to the data conditions (e.g., mobile mi-
crophone recordings of non-native English) or to an exact match of
phonetic content starting to hinder the SID task, and the SID classi-
fier beginning to operate as a prompt classifier. Specifically, the pho-
netic content may start to dominate the i-vector rather than speaker
content. To determine the strength of this hypothesis, we evaluated
prompt identification using the RSR2015 dataset with the systems
trained for SID.

We performed the prompt-identification experiments in similar
way as for SID: enroll a speaker-dependent phrase using three utter-
ances from three devices and then score against the remaining 180
utterances of 30 distinct sentences from the same person using dif-
ferent devices in the RSR2015 dataset. Note that the task of speaker
recognition has been removed for this analysis by excluding trials
across speakers. This resulted in a trial set of over 17k and 500k tar-
get and impostor trials, respectively. Figure 2 plots the results for the
different BN layer positions where the 4th hidden layer as a bottle-
neck can be seen to provide the best prompt-detection performance.
In contrast, however, the BN features outperform BN+MFCC. This
finding is expected, because MFCC brings additional speaker depen-
dence. Noteworthy is the very low error rates despite the system be-
ing trained for SID and not specifically tailored for prompt ID. This
finding supports the fact that speaker discrimination using PLDA
still maintains phonetic content information as reported in [22].

Fig. 2. The effect of varying BN layer position (1 and 5 denote the
first and last hidden layer, respectively) in a phonetic DNN from
which features were extracted for matched prompt speaker recogni-
tion (left), different prompt speaker recognition (center), and prompt
identification (right) using the RSR2015 dataset. Baseline MFCC
performance is also shown with results reported in terms of Equal
Error Rate (EER).

5. CONCLUSIONS

In this work, we analyzed how bottleneck layer position in a phonetic
DNN impacts SID and LID performance when based on bottleneck
features. Five different DNNs with five hidden layers were trained,
each with the bottleneck layer at a different position, and bottleneck
features for all tasks were extracted from each of the DNNs. Lan-
guage recognition analysis showed that greater phonetic informa-
tion, invoked by having the bottleneck layer close to the output layer,
provided better performance across duration of the LRE’09 dataset.
On the RATS LID task, however, a bottleneck layer more central to
the DNN provided additional robustness when evaluating the system
on conditions mismatched to the DNN training data. The same trend
was observed for SID. In particular, under mismatched conditions, a
bottleneck layer closer to the input features (log Mel filter bank en-
ergies) was more robust, which is consistent with the hypothesis that
proper alignment of test phones with UBM components is crucial to
reducing the impact of phonetic content on SID. A final experiment
in prompt identification showed that a SID i-vector/PLDA system
achieves very high accuracy without tailoring PLDA to the task with
BN features closer to the output layer significantly improving per-
formance over an MFCC-based system.

This study suggests several feasible avenues of research. For
LID, adding additional layers prior to using the second-to-last hidden
layer as a bottleneck feature may enable additional phonetic discrim-
ination in the corresponding features by making it relatively closer to
the output layer. For SID, the feature-level fusion of BN+MFCC still
offers considerably better performance over each individual feature.
Given the hypothesis that BN features better align frames to pro-
nunciation instead of acoustic sounds, one might expect that using
BN features to align MFCC frames may provide the same benefit;
that is, train the UBM on BN features, while generating first-order
statistics on MFCCs aligned using the corresponding BN features.
Finally, given the strong phonetic information of i-vectors based on
BN features from short speech segments, continuing research in the
direction of [22] to help suppress this information may further im-
prove the robustness of SID based on BN features.
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