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ABSTRACT

To deal with the mismatch between the enrollment and test utter-
ances caused by noise with different signal-to-noise ratios (SNR),
we have recently proposed an SNR-invariant PLDA model for ro-
bust speaker verification. In the model, SNR-specific information
were separated from speaker-specific information through marginal-
izing out the SNR factors during the scoring process. However, this
modeling approach assumes that speaker variabilities can be cap-
tured by a single speaker subspace regardless of the noise level of
the utterances. We will show in this paper that i-vectors extract-
ed from utterances with different noise levels will shift to different
regions of the i-vector space and that i-vectors extracted from utter-
ances having similar SNR tend to cluster together. In view of this
observation, we propose introducing multiple speaker subspaces to
the SNR-invariance PLDA model and use multiple covariance matri-
ces to represent SNR-dependent channel variability. Through NIST
2012 SRE, this paper demonstrates that this finer and more pre-
cise modeling of speaker and SNR variabilities leads to better per-
formance when compared with the conventional PLDA and SNR-
invariant PLDA.

Index Terms— i-vectors; SNR-invariant PLDA; speaker sub-
spaces; SNR subspaces; speaker verification.

1. INTRODUCTION

How to develop speaker verification systems that can handle dif-
ferent levels of background noise has become a research focus in
the speaker verification domain [1]. Many strategies have been pro-
posed. Among them, some aim to derive more robust features from
i-vectors [2–4], while others attempt to make the back-end classifiers
more robust to noise [5–7].

While i-vector [8] extraction followed by probabilistic LDA
(PLDA) [9] is very effective in addressing channel variability, the
performance degrades rapidly in the presence of background noise
with a wide range of SNR [10]. To improve the robustness of i-
vector/PLDA systems, several methods have been proposed. In [11],
clean and noisy utterances were pooled together to train a robust
PLDA model. Garcia-Romero et al. [12] employed multi-condition
training to train multiple PLDA models, one for each condition. A
robust system was then constructed by combining all of the PL-
DA models according to the posterior probability of each condition.
In [13], mixture of probabilistic PCA was performed on the feature
space so that the posterior means of the mixture-dependent acous-
tic factors become the enhanced and normalized version of MFCC
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acoustic vectors. It was found that using these enhanced features
to compute the first-order sufficient statistics in an i-vector extractor
can improve the robustness of the resulting i-vectors. The idea is
further enhanced in [14], where the UBM was replaced by a mixture
of acoustic factor analyzers for i-vector extraction.

Focus was shifted to noise robust speaker verification in NIST
2012 SRE [15]. Many i-vector/PLDA systems, such as [16], perfor-
m very well in the evaluation. However, many of them use a single
PLDA model to handle all of the test utterances regardless of their
noise level. In [17], a mixture of SNR-dependent PLDA is proposed
so that each mixture focuses on a small range of SNR. During ver-
ification, the mixtures cooperate with each other to deal with utter-
ances of various noise levels. Unlike the conventional mixture of
factor analyzers [18] where the posteriors of the indicator variables
depend on the data samples, in [17], the posteriors of the indicator
variables depend on the utterances’ SNR. In [19,20], mixture of PL-
DA with shared speaker space was used for verifying speakers from
multiple channels. In [21, 22], the mixture of factor analyzers [23]
is extended to mixture of PLDA in which the stacked i-vectors from
multiple sessions of a speaker are assumed to be generated from a
mixture of factor analyzers.

By assuming that i-vectors derived from utterances falling with-
in a narrow SNR range should share similar SNR-specific informa-
tion, we have recently proposed to add an SNR-subspace to the con-
ventional PLDA models, resulting in SNR-invariant PLDA [6, 24].
With the SNR-subspace, the SNR-invariant PLDA can capture both
speaker, noise-level, and channel variabilities embedded in the i-
vectors. A limitation of SNR-invariant PLDA is that all i-vectors
are assumed to live in the same region of the i-vector space, regard-
less of the noise level of utterances. In essence, the method assumes
that all variabilities in the i-vectors due to noise-level variability oc-
cur exclusively in the SNR subspace and that all variabilities due
to speaker differences occur in a single speaker subspace. This is
certainly undesirable if noise-level variability not only causes the i-
vectors of the same speaker to vary in a subspace but also shifts the
i-vectors to different regions of the i-vector space. We will show
in this paper that noise can shift the mean of i-vectors, with the de-
gree of shift depends on the noise level. This phenomenon clearly
violates the assumptions of SNR-invariant PLDA. Inspired by this
mean-shift phenomenon, this paper proposes to incorporate multi-
ple SNR-dependent speaker subspaces and SNR-dependent residue
terms (representing channel variability) into the SNR-invariant PL-
DA.

The paper is organized as follows. Section 2 introduces the con-
ventional PLDA and the SNR-subspace in the SNR-invariant PLDA.
The notion of multiple speaker subspaces is explained in Section 3.
The training and scoring algorithms of the resulting model will al-
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so be described. The advantages of using multiple speaker subspace
are demonstrated in Sections 4 and 5 through experiments on NIST
2012 SRE. Finally, Section 6 provides some concluding remarks and
possible extensions of the proposed method.

2. BACKGROUND

2.1. Conventional PLDA

In the conventional i-vector/PLDA framework [25], an i-vector xij

– the j-th i-vector from speaker i – is regarded as an observation
generated from a linear model [26, 27]:

xij = m + Vhi + Grij + εij (1)

where m is the global i-vector mean, V defines the speaker sub-
space, G defines the channel subspace, hi and rij are latent factors
depending on the speaker and session respectively, and εij denotes
a residual term which follows a Gaussian distribution N (ε|0,Σ).
Typically, Σ is a diagonal matrix aiming to model any remaining
variabilities that cannot be described by VVT and GGT.

2.2. SNR-invariant PLDA

To enhance the robustness of i-vector/PLDA, we have recently pro-
posed an SNR-invariant PLDA model [6, 24] to deal with SNR mis-
match. In this model, training utterances are first divided into K
groups according to their SNR. As a result, each of the training i-
vectors is associated with one SNR subgroup. Denote xk

ij as the
j-th i-vector from speaker i in the k-th SNR subgroup. Then, xk

ij is
expressed as:

xk
ij = m + Vhi + Uwk + εkij , k = 1, . . . ,K (2)

where m is the global mean of i-vectors, V defines the speaker sub-
space, hi is a latent speaker factor, U defines the SNR subspace,
wk is a latent SNR factor with a standard normal distribution, εkij is
a residual term with distribution N (ε|0,Σ). In [6, 24], Σ is a full
covariance matrix aiming to model the channel variability.

The key difference between the conventional PLDA (Eq. 1) and
SNR-invariant PLDA (Eq. 2) is that the former uses a channel sub-
space (G) to model channel variability, whereas the latter uses an
SNR subspace (U) to capture the variability due to noise level dif-
ferences. As a result, the SNR latent factors (wk in Eq. 2) depend on
the SNR subgroups, whereas the session latent factors (rij in Eq. 1)
depend on the speaker and sessions.

3. PROPOSED FRAMEWORK

3.1. SNR-dependent I-vectors

This paper is based on the hypothesis that i-vectors extracted from
utterances of different SNRs locate in different regions of the i-
vector space. To validate this hypothesis, we added babble noise
to 7156 utterances from NIST 2005–2008 SREs at 6dB and 15dB. I-
vectors were then extracted from the original (clean) utterances and
the noise contaminated utterances. Fig. 1 displays the three groups of
i-vectors on the first 3 principal components. Evidently, the i-vectors
form three clusters and the locations of the clusters depend on the S-
NR level. In particular, the 6dB cluster (black) is further away from
the clean cluster (blue) than the less noisy cluster (red). Moreover,
the cluster shapes are also not identical, meaning that there exist
multiple speaker subspaces within the i-vector space.
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Fig. 1. Illustration of the mean-shift effect of i-vectors caused by
different levels of background noise in the corresponding utterances.

3.2. Multiple Speaker Subspaces

Combining the mean-shift effect and SNR-dependent cluster shapes
shown in Fig. 1, we propose to extend the SNR-invariant PLDA
model as follows:

xk
ij = mk + Vkhi + Uwk + εkij k = 1, . . . ,K, (3)

where mk is to address the mean-shift effect and Vk represents the
speaker subspace of the k-th SNR group. Moreover, unlike the mod-
els in Eq. 1 and Eq. 2, the covariance of the residual term also de-
pends on the SNR group, i.e., εkij followsN (0,Σk).

3.3. EM Algorithm

To fully exploit the capability of the PLDA model defined in Eq. 3, it
is necessary to divide the training i-vectors into multiple SNR groups
so that each of the speaker subspaces can be estimated by more rel-
evant i-vectors. Instead of using a manual division of SNR as in
our earlier work [6], here, we propose to use a GMM to model the
density of SNR of the training utterances and use the posterior prob-
ability of SNR given by the GMM to divide the training i-vectors
into SNR groups. More specifically, given a K-mixture GMM, the
k-th i-vector subgroup comprises the i-vectors whose corresponding
SNRs have the highest posterior probability with respect to the k-th
mixture in the GMM.

Denote θ = {mk,Vk,U,Σk}Kk=1 as the parameters of the pro-
posed model. These parameters can be learned from a training set X
using maximum likelihood estimation. Given an initial value θ, we
aim to find a new estimate θ̂ that maximizes the auxiliary function:

Q(θ̂|θ) = Eh,w

[∑
ikj

ln
(
p(xk

ij |hi,wk, θ̂)p(hi,wk)
)∣∣∣X ,θ]

= Eh,w

[∑
ikj

(
lnN (xk

ij |mk + Vkhi + Uwk,Σk)

+ lnN (hi|0, I) + lnN (wk|0, I)
)∣∣∣X ,θ].

(4)
To maximize Eq. 4, we need to estimate the posterior distributions
of the latent variables given the model parameters θ. Denote Hi(k)
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as the number of training i-vectors from speaker i in the k-th i-
vector subgroup, S as the number of training speakers, and Mk =∑S

i=1Hi(k) as the number of training i-vectors falling in the k-th
i-vector subgroup. Then, the E-step is as follows:1

L1
i = I +

K∑
k=1

Hi(k)V
>
k Φ−1

k Vk (5)

L2
k = I +MkU>Ψ−1

k U (6)

〈hi|X 〉 = (L1
i )
−1

K∑
k=1

V>k Φ−1
k

Hi(k)∑
j=1

(xk
ij −mk) (7)

〈wk|X 〉 = (L2
k)
−1U>Ψ−1

k

S∑
i=1

Hi(k)∑
j=1

(xk
ij −mk) (8)

〈hih
T
i |X 〉 = (L1

i )
−1 + 〈hi|X 〉〈hi|X 〉T (9)

〈wkwT
k|X 〉 = (L2

k)
−1 + 〈wk|X 〉〈wk|X 〉T (10)

〈wkhT
i |X 〉 = 〈wk|X 〉〈hi|X 〉T (11)

〈hiw
T
k|X 〉 = 〈hi|X 〉〈wk|X 〉T (12)

where

Φk = UU> + Σk and Ψk = VkV>k + Σk,

and 〈·〉 denotes expectation.
Given Eq. 5–Eq. 12, the model parameters θ can be estimated

via the M-step as follows:

mk =
1

Mk

S∑
i=1

Hi(k)∑
j=1

xk
ij (13)

Vk =


S∑

i=1

Hi(k)∑
j=1

[
(xk

ij −mk)〈hi|X 〉> −U〈wkhT
i |X 〉

]
S∑

i=1

Hi(k)∑
j=1

〈hih
T
i |X 〉


−1

(14)

U =


S∑

i=1

K∑
k=1

Hi(k)∑
j=1

[
(xk

ij −mk)〈wk|X 〉> −Vk〈hiw
T
k|X 〉

]
S∑

i=1

K∑
k=1

Hi(k)∑
j=1

〈wkwT
k|X 〉


−1

(15)

Σk =
1

Mk

S∑
i=1

Hi(k)∑
j=1

[
(xk

ij −mk)(x
k
ij −mk)

>

−Vk〈hi|X 〉(xk
ij −mk)

> −U〈wk|X 〉(xk
ij −mk)

>
]

(16)

3.4. Likelihood Ratio Scores

Given a test i-vector xt and a target-speaker i-vector xs, we need
to determine to which SNR groups they belong before calculating

1Full derivations of Eq. 5 to Eq. 18 can be found in
http://bioinfo.eie.polyu.edu.hk/SI-PLDA/SuppMaterials.pdf.

the verification score. If the SNRs of the test and target-speaker ut-
terances are known, we may use the K-mixture GMM to determine
the SNR groups. In case the SNRs are unknown, we can compare
the Euclidean distances between the test/target i-vector with the K
i-vector means mk, k = 1, . . . ,K, in Eq. 3.2 Specifically, the test
and target-speaker i-vectors are respectively classified to the kt-th
and ks SNR groups if they are closest to mkt and mks among the
K i-vector means. Then, the likelihood ratio score can be computed
as follows:

SLR(xs,xt) = ln
p (xs,xt|same-speaker)

p(xs,xt|different-speakers)

= ln

N
([

xs

xt

] ∣∣∣∣ [mks

mkt

]
,

[
Aks Bkskt

B>kskt
Akt

])
N
([

xs

xt

] ∣∣∣∣ [mks

mkt

]
,

[
Aks 0
0 Akt

]) (17)

where

Aks = VksV>ks
+ UU> + Σks ,

Akt = VktV
>
kt

+ UU> + Σkt , and

Bkskt = VksV>kt
.

(18)

4. EXPERIMENTS

4.1. Evaluation Protocol and Speech Data

Experiments were performed on common conditions (CC) 4 and 5
of the core set of NIST 2012 Speaker Recognition Evaluation (SRE)
[15]. We used data from NIST 2005–2010 for system development.
The speech data were divided into the following parts:

• Test Data: CC4 in NIST 2012 SRE comprises noise-
contaminated test utterances with SNR ranges from 0dB to
50dB, and the telephone utterances in CC5 were recorded
in noisy environments with SNR ranges from 10dB to 50d-
B. Readers may refer to [6] for the SNR distributions of test
utterances in these common conditions and the procedures for
measuring the SNRs.

• Enrollment Data: Enrollment data comprises the telephone
segments of target speakers. Each target speaker has one or
more segments recorded over different channels and with dif-
ferent durations longer than 10 seconds.3

• Development Data: Development data were used for train-
ing the subspace projection matrices (LDA and WCCN), PL-
DA, SNR-invariant PLDA (S-PLDA) and the proposed mod-
el. The data comprise two parts. One part includes the tele-
phone and microphone segments in 2005–2010 SREs. The
other part comprises noise-corrupted telephone segments with
different SNRs. The details of how to obtain these noisy
speech can be found in Section IV-B in [6]. There are total-
ly 14226 (resp. 22356) noise corrupted files from 763 male
(resp. 1030 female) speakers in the development data. The
“actual” SNRs of the training data were estimated using the
voltmeter function of FaNT and the speech/non-speech deci-
sions of our VAD [28, 29]. The microphone and telephone

2The Euclidean distances are based on the i-vectors and mean i-vectors
before any i-vector processing such as whitening and length normalization.

3We have excluded enrollment utterances shorter than 10 seconds but en-
sure that every target speaker has at least one enrollment utterance.
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Method
No. of CC4 CC5

SNR Groups Male Female Male Female
(K) EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

PLDA (Eq. 1) – 3.39 0.325 3.10 0.354 2.80 0.303 2.34 0.331
S-PLDA (Eq. 2) 3 3.20 0.300 2.95 0.327 2.80 0.302 2.37 0.319

Proposed (Eq. 3)
2 3.31 0.302 3.09 0.333 2.74 0.276 2.36 0.350
3 3.06 0.309 2.88 0.332 2.80 0.278 2.31 0.325
4 3.12 0.316 2.84 0.339 2.79 0.284 2.26 0.321

Table 1. Performance of PLDA, SNR-invariant PLDA (S-PLDA), and the SNR-invariant PLDA with multiple speaker subspace (proposed)
on CC4 and CC5 of NIST 2012 SRE (core set).

Model Model Parameters EER(%) minDCF

1 θ1 = {m,V,U,Σ} 3.20 0.300
2 θ2 = {mk,Vk,U,Σk} 3.06 0.309
3 θ3 = {mk,V,U,Σ} 3.30 0.305
4 θ4 = {m,Vk,U,Σk} 3.15 0.308
5 θ5 = {mk,V,U,Σk} 3.57 0.319
6 θ6 = {mk,Vk,U,Σ} 2.81 0.332

Table 2. Performance of different SNR-invariant PLDA models on
CC4 of NIST 2012 SRE (core set, male speakers). In the 2nd col-
umn, k = 1, . . . ,K, where K is the number of SNR groups.

segments from NIST 2005–2008 SREs were used as devel-
opment data to train the gender-dependent UBMs and total
variability matrices.

4.2. Acoustic Feature Extraction

For each speech segment, a two-channel VAD [28,29] was applied to
prune out silence regions. Then the speech regions were segmented
into 25-ms Hamming windowed frames with 10-ms frame shift. The
first 19 Mel frequency cepstral coefficients (MFCC) with log ener-
gy were calculated with their first and second derivatives to form a
60-dimensional acoustic vector, followed by cepstral mean normal-
ization and feature warping [30] with a window size of 3 seconds.

4.3. I-vector Extraction

The i-vector extractor is based on a gender-dependent UBM with
1024 mixtures and a total variability matrix with 500 total factors.
Similar to [31], we applied within-class covariance normalization
(WCCN) and i-vector length normalization (LN) to the 500-
dimensional i-vectors. Then, linear discriminant analysis (LDA)
[32] and WCCN were used to further reduce intra-speaker variabil-
ity and reduce the dimension to 200. Then PLDA models, SNR-
invariant PLDA models, and the proposed model with 150 latent i-
dentity factors were trained.

5. RESULTS AND DISCUSSIONS

We used equal error rate (EER) and minimum decision cost function
(minDCF) defined in NIST 2012 SRE to evaluate the performance
of different systems. Unless stated otherwise, the number of SNR

groups for SNR-invariant PLDA models was set to 3 and the dimen-
sion of SNR factors in SNR-invariant PLDA and the proposed model
was set to 40.

Table 1 shows that both the proposed model and SNR-invariant
PLDA are superior to the conventional PLDA trained by pooling the
original and noisy training data (multi-condition training). Compar-
ing the proposed model and SNR-invariant PLDA in Table 1, we
can see that the proposed model achieves a lower EER, while SNR-
invariant PLDA achieves a lower minDCF in most situations.

To demonstrate that it is important to model the mean-shift ef-
fect in i-vectors, we implemented an SNR-invariant PLDA model
that uses a global mean (m) but with multiple speaker subspaces
(Vk’s) and compared its performance against the one that uses mul-
tiple mean i-vectors (mk) and multiple speaker subspaces (Vk’s).
The results are shown in Table 2. Comparing Model 2 with Model 4
reveals that the multiple means mk’s are important because they can
reduce the EER by 2.9% with only an insignificant increase (0.3%)
in minDCF. The poor performance of Model 5 when compared with
Model 2 suggests that once we have used multiple i-vector means
to model the mean-shift effect, it is also necessary to use multiple
speaker subspaces.

We also made the SNR-invariant PLDA model to share the same
covariance matrix. Surprisingly, if minimizing EER is the goal, the
result achieved by Model 6 in Table 2 suggests that it is not neces-
sary to use SNR-dependent covariances Σk’s. Because Σ aims to
model channel variability, we conjecture that channel variability is
not SNR dependent, and therefore it makes more sense to pool all
data to estimate a single Σ. This is an interesting area that requires
further research.

6. CONCLUSIONS AND POSSIBLE EXTENSIONS

A new SNR-invariant PLDA model is presented. It is designed to
improve the robustness of speaker verification systems when the test
utterances exhibit a wide range of SNR. By introducing multiple
eigenvoice matrices to SNR-invariant PLDA, speaker information
can be captured and the effect of noise-level variability and chan-
nel variability can be largely suppressed. Experiments on the NIST
2012 SRE demonstrate the effectiveness of the proposed method.

While both SNR-invariant PLDA (S-PLDA) and SNR-dependent
mixture of PLDA (mPLDA) [17, 33] aim to address SNR variabili-
ty, they achieve this goal through different means. Specifically, the
former uses an SNR subspace to capture SNR variability, whereas
the latter uses multiple PLDA models to capture the SNR-dependent
variabilities so that each PLDA model focuses on a narrow SNR
range. Therefore, possible future work includes incorporating the
SNR subspace into the mixture models in mPLDA.
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