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ABSTRACT 

 
Nowadays state-of-the-art speaker recognition systems obtain quite 

accurate results for both text-independent and text-dependent tasks 

as long as they are trained on a fair amount of development data 

from the target domain, and as long as the target data is clean. In 

this work we investigate the use of matched filters for speaker 

recognition in the framework of a small in-domain development 

data. We show how a matched filter can be optimized to maximize 

SNR (signal to noise ratio)  when the noise component includes 

both intra-speaker variability and center/mean hyper-parameter 

variability. The proposed method generalizes our previous method 

named score stabilization and obtains significant speaker 

recognition error reductions. 

 
Index Terms— speaker verification, domain adaptation, score 

normalization, i-vector centering, matched filter 

 

1. INTRODUCTION 

 
The introduction of i-vectors [2] and Probabilistic Linear 

Discriminant Analysis (PLDA) [3] resulted in very low error rates 

in the recent NIST text-independent (TI) speaker recognition 

evaluations (SREs) [4]. However, the success of i-vector based 

PLDA is dependent on the availability of a large development set 

with thousands of multi session speakers, to estimate the PLDA 

hyper-parameters. Moreover, the development data must be 

matched to the target data. 

When the target data is highly mismatched to the available 

development data, for instance due to channel mismatch or in text-

dependent speaker recognition, a common strategy is to collect 

some data from the target domain. The collected in-domain data is 

then used to either train the speaker recognition system from 

scratch [4-7] or to adapt an already existing system [5-10]. 

In this paper we investigate how to train a speaker recognition 

system with limited in-domain data (no use of out-of-domain data 

whatsoever). We assume that each session is parameterized by a 

high-level feature vector (such as an i-vector or a supervector), and 

propose to estimate a matched filter for each enrolled speaker. The 

speaker-dependent matched filter is then used to produce scores. 

We then apply standard score normalization (ZT-norm [11]). 

The use of a matched filter for scoring high level features in  

the framework of speaker recognition has been proposed in [12] 

for suppressing an interfering speaker in the framework of speaker 

recognition in summed (2-wire) conversations. The matched filter 

was applied in the Gaussian Mixture Model (GMM) supervector 

space.  

 Variants of matched filters were successfully used by 

Khosravani [13] for training a speaker recognizer with unlabeled 

development data (in the framework of the NIST 2013-4 i-vector 

challenge). 

The use of matched filters in this work is different in the sense 

that the focus is training the system using a small labeled 

development dataset. Furthermore, the noise/interference we aim at 

suppressing is a combination of intra-speaker inter-session 

variability and center/mean hyper-parameter variability.  

The center/mean hyper-parameter is the expectation of the 

distribution of high-level features (i-vectors, GMM or DNN 

supervectors) over the target session space. In the i-vector 

LDA/PLDA framework the mean is used for i-vector centering 

prior to length normalization. The importance of having an 

accurate estimation of the i-vector center has been highlighted in 

[8]. For the GMM-NAP (Nuisance Attribute Projection) 

framework score-normalization implicitly  uses an estimate of the 

center/mean [11], and the importance of having an accurate 

estimation of it has been shown in [1]. In practice, when devset 

size is limited, the point estimate of the center/mean hyper-

parameter is noisy and this is addressed by our proposed method. 

The remainder of this paper is organized as follows: Section 2 

describes the proposed method. Section 3 describes the baseline 

system, data, experiments and results. Finally, Section 4 concludes. 

 

2. MATCHED FILTERS FOR SPEAKER 

RECOGNITION 

 

2.1. Matched filter 

 
We assume that an observed signal x is a sum of  a desirable signal 

s and an additive noise v: 

 

vsx                                                 (1) 

 

We seek a filter h, such that h maximizes the output signal-to-noise 

ratio, where the output is the inner product of the filter and the 

observed signal x. The solution is given by [14] 

 

     svh
11 cov





                                    (2) 

 

where α is a scaling constant dependent on s and cov{v} (α cancels 

out after score normalization). 

 

2.2. Model 

 
Given a high-level feature vector x extracted from a session, 

consider the following generative model: 

 

    xx nscx                                 (3) 
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where s is the mean high-level feature vector representing 

the speaker, nx is a session dependent intra-speaker nuisance 

vector, µ is the center/mean of the speaker population distribution 

(not necessarily known) of high-level features, and cx is a session 

dependent scaling factor. The scaling factor is required to model a 

scaling phenomenon which is partly the basis of popular methods 

such as score normalization, cosine distance scoring, and i-vector 

length normalization.  
Given a pair high-level features x and y corresponding to an 

enrollment session and a verification session respectively, consider 

scoring function f: 

 

       yxyxf
t

,                           (4) 

 

where Ω is a matrix we strive to optimize. Scores are then 

normalized using ZT-norm: 
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Note that Eq. (5) is free of score bias terms because they biases 

equal to zero for f, as can be seen in Eq. (6). The variance terms in 

Eq. (5) are estimated from the (small) development dataset. 
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In practice, µ is unknown and is replaced by an estimate. We use 

our estimate to center our vector space (remove the estimated 

center from each vector in our development and evaluation data). 

We denote the estimate bias (error) by vector δ. x~ denotes a 

centered vector associated to speaker s. x~  can be reformulated as: 
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Our scoring framework includes ZT-norm which is invariant to 

scaling of the input vectors. Therefore we can replace for 

simplicity Eq. (7) with Eq. (8): 

x
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Centered vector y~  originating from the same speaker as x~  

can now be formulated as: 
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2.3. Suppressing target variability  
 

The matched filter corresponding to the model in Eq. (9) is  

 

     xh
c

~varW
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                                (10) 

 

where W stands for the intra speaker covariance matrix 

 

   ncovW                                            (11) 

 

and Δ stands for the center/mean uncertainty covariance matrix 

 

   cov                                           (12) 

 

Note that a reasonable estimate for Δ is based on the sample total 

covariance matrix T (estimated from the development set) 

 

  
m

T
                                              (13) 

 

where m is the number of speakers in the development dataset (see 

[1] for more details). Note also that the effect of center uncertainty 

is magnified by the scaling variability. 

 

2.3. Scoring with the matched filter 
 

Once h is estimated according to Eq. (10). we set Ω (in Eq.  (4)) to 

be equal to    1
cov


v (in Eq. (2)). That is, we obtain the scoring 

function 
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for suppressing target variability. The scoring function in Eq. (14) 

is evaluated in Section 3. 

 

2.5. Implementation issues 
 

2.5.1. Smoothing  
W and T are estimated from a small development set. Therefore, 

they are not invertible and noisy. We smooth both W and T by 

using the shrinkage method [15].  

 

2.5.2. NAP vs. WCCN (Within Class Covariance 

Normalization) 

  
Assuming an infinite development dataset (m→∞), Eq. (14) turns 

into  

 

                  yxyxf t ~W~~,~ 1                                  (15) 

 

which turn out to be the WCCN method [16]. However from our 

past experience (revalidated on the setup described in Section 3), 

NAP (which is hard subspace removal for intra-speaker variability 

compensation) slightly but consistently outperforms WCCN for the 

GMM-supervector framework. We therefore apply NAP as a 

preprocessing step on vectors x and y, and set W (which is now the 

residual intra-speaker variability) to be a scalar matrix. The value 

of the scalar is estimated from the development data. 
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2.5.3. Estimating var{
c

1
} 

We estimate var{
c

1
} from the development data. We assume for 

this purpose that δ=0 and n=0. We compute the mean high-level 

vector for each speaker in the development set and estimate the 

scaling factor cx for each session x with respect to the speaker 

mean. Finally we estimate var{
c

1
} as the empirical variance of  

{
xc

1 } over the development dataset.  

 

 

3. EXPERIMENTS 

 

3.1. Baseline System 

 
Our baseline system is based on the GMM-NAP framework as 

GMM-NAP outperforms i-vector based approaches when 

development data is small [6, 7]. Nevertheless, our proposed 

method can be used for the i-vector framework as well to handle 

center uncertainty.  

In the GMM-NAP framework a GMM is adapted for each 

session (enrollment, testing and development) from a UBM using 

MAP-adaptation. A projection is estimated from the development 

set and is used to compensate intra-speaker intersession variability 

(such as channel variability).  

 

3.1.1. Front-end 
The front-end is based on Mel-frequency cepstral coefficients 

(MFCC). An energy based voice activity detector is used to locate 

and remove non-speech frames. The final feature set consists of 12 

cepstral coefficients augmented by 12 delta and 12 double delta 

coefficients extracted every 10ms using a 25ms window. Feature 

warping is applied with a 300 frame window before computing the 

delta and double delta features. 

 

3.1.2. GMM supervector extraction 
A 512-Gaussian Universal Background Model (UBM) with 

diagonal covariance matrices is trained on the development set and 

is used for extracting the supervectors. The means of the GMMs 

are stacked into a supervector after normalization with the 

corresponding standard deviations of the UBM and multiplication 

by the square root of the corresponding weight from the UBM: 

  FUBM Ix   2/12/1                          (16) 

where µ stands for the concatenated GMM means, λUBM stands for 

the vectorized UBM weights, ∑ is a block diagonal matrix with 

covariance matrices from the UBM on its diagonal, F is the feature 

vector dimension,   is the Kronecker product, and IF is the 

identity matrix of rank F. We center all supervectors using the 

mean of the development set. 

 

3.1.3. NAP estimation 
A low rank projection P is estimated as follows. First, we remove 

from each supervector in the development its corresponding 

speaker supervector mean. The resulting supervectors  are named 

nuisance supervectors. We compute the covariance matrix of the 

nuisance supervectors and apply PCA to find a basis to the 

nuisance space. Projection P is created by stacking the top k 

eigenvectors as columns in matrix V: 

 tVVIP  .                                    (17) 

3.1.4. NAP compensation 
The enrollment supervectors are compensated by applying 

projection P.  

Pxx dcompensate  .                                (18) 

3.1.5. Scoring and score normalization 
Scoring is performed using a dot-product between the compensated 

enrollment and test supervectors. We apply ZT-score 

normalization [11] using the sessions from development data.  

 

3.2. Contrasting System: Score stabilization 

 
In [1] we aimed at improving our GMM-NAP system in the small 

development dataset scenario. We proposed to stabilize score 

normalization parameters by removing from the GMM-supervector 

space a subspace spanned by the top eigenvectors of the total 

variability covariance matrix (hence, score stabilization).  

In fact, our proposed scoring function (Eq. (14)) replaces the 

hard subspace removal in [1] by a soft approach which effectively 

deemphasizes the top eigenvectors of the total variability 

covariance matrix. 

 

3.3. Text dependent dataset 
 

The WF dataset consists of 750 speakers which are partitioned into 

a development set (200 speakers) and an evaluation dataset (550 

speakers). Each speaker has 2 sessions using a landline phone and 

2 sessions using a cellular phone. The data collection was 

accomplished over a period of 4 weeks.  

In this work we limit ourselves to the common passphrase 

condition for which the same passphrase is used for both 

development, enrollment and verification. We report results for the 

10-digit pass phrase 0-1-2-3-4-5-6-7-8-9 which we name ZN.  

In the WF dataset each session contains 3 repetitions of ZN. 

For each enrollment session we use all 3 repetitions for enrollment, 

and for each verification session we use only a single repetition. A 

comprehensive description of the WF dataset can be found in [4]. 

We define the following subsets of the WF dataset (Table 1).  

In table 1 L stands for a landline sessions and C for a cellular 

session. For instance, LLCC stands for 4 sessions (2 landline + 2 

cellular), and LC stands for 2 sessions (1 landline + 1 cellular). 

Subsets are gender balanced.  

 Table 1. Reduced development dataset.  

Name Number of speakers Sessions per speaker  

Full 200 LLCC 

50 50 LLCC 

50LC 50 LC 

30 30 LLCC 

30LC 30 LC 

30LL 30 LL 
30CC 30 CC 

20 20 LLCC 

20LC 20 LC 
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3.4. Text independent dataset 

We use the NIST 2010 SRE [10] for evaluation.  We use the NIST 

2010 SRE male core trial list with telephone conditions (5, 6 and 8) 

for evaluation. The dataset consists of  355, 178 and 119 target 

trials and 13746, 12825 and 10997 impostor trials respectively. 

The development dataset consists of male sessions from NIST 

2004 and 2006 SREs (telephone data only). In total we use 4374 

sessions from 521 speakers. 

tWe define the following subsets of the TI development set. 

The number of speakers is varied between 20 and 500. Each subset 

consists of 2 sessions per speaker. 

3.5. Text dependent results 

Table 2 reports results using different subsets for development. 

The baseline system (with NAP subspace dimension of 10 which 

was found optimal in [1]) is contrasted to both score stabilization-

based system and to the proposed method. In order to reduce the 

variance of our measured EERs, we repeat each experiment 10 

times with randomly selected subsets. the score stabilization-based 

system is configured to the best configuration found in [1] 

(removal of top 25 eigenvectors of the total variability covariance 

matrix). 

 

Table 2. Results for TD using different subsets for 

development. The proposed method is contrasted to both 

the baseline and score stabilization (SS)  systems. Results 

are averaged over 10 randomly selected subsets. Best result 

for each subset is in bold. 

System 20LC 20 30CC 30LL 30LC 30 50LC 50 Full 

Baseline 2.8 2.5 3.2 3.3 2.4 2.1 1.8 1.6 1.0 

SS 2.3 2.0 2.4 2.4 2.1 1.8 1.7 1.5 1.1 

Matched Filter 2.2 1.9 2.3 2.3 1.9 1.7 1.6 1.4 0.9 

Error reduc. 

rel. to baseline  
in % 

21 24 28 30 21 19 11 13 10 

Error reduc. 

rel. to  SS 

in % 

4 5 4 4 10 6 6 7 18 

3.6. Text independent results 

Table 3 reports results using different subsets of the development 

dataset. The baseline system (with NAP subspace dimension of 50 

which was found optimal in [1]) is contrasted to both the 

contrasting system and to the proposed method. In order to reduce 

the variance of our measured EERs, we repeat each experiment 10 

times with randomly selected subsets. the contrasting system is 

configured to the best configuration found in [1] (removal of top 

10 eigenvectors of the total variability covariance matrix). 

 

 

 

 

 

 

 

 

 

 

Table 3. Results for the TI task as a function of number of 

speakers in subset. Subsets contain two sessions per 

speaker. Results are averaged over 10 randomly selected 

subsets. Best result for each subset is in bold. 

Method Cond. 20 30 40 50 100 200 300 400 500 

Baseline 

     5 

13.7 13.2 11.8 10.7 9.6 7.3 6.2 5.4 5.4 

 SS 13.7 13.0 11.0 10.1 8.7 6.5 5.6 4.5 5.1 
Matched Filter 13.5 12.7 11.0 9.8 8.9 6.8 5.9 5.1 5.3 

Baseline 

     6 
16.3 14.7 14.7 14.5 14.0 9.6 8.4 7.9 7.3 

SS 15.1 15.0 14.6 13.5 11.8 8.3 8.2 7.3 7.3 
Matched Filter 14.9 14.6 14.2 13.5 11.8 9.1 7.9 7.5 7.3 

Baseline 
     8 

6.7 5.9 5.0 5.0 4.2 2.5 1.7 1.5 1.7 

SS 6.7 6.7 4.2 4.1 1.7 1.7 1.7 1.7 1.7 
Matched Filter 5.9 5.2 5.0 4.2 2.6 1.7 1.7 1.7 1.7 

 

 

4. CONCLUSIONS 
 

In this work we generalize our recently proposed method of coping 

with uncertainty in center and total variability covariance matrix 

estimate. Contrary to our method in [1] which removes a subspace 

spanned by the top eigenvectors of the total variability covariance 

matrix, we use a softer approach of using the matched filter 

framework to optimally suppress the combination of the intra-

speaker variability and center/mean uncertainty. 

The proposed method was evaluated under the GMM-NAP 

framework as it has been found in the past to outperform the i-

vector framework when development data is limited [4-7]. 

For the text dependent experiments, the proposed method 

improves significantly over the baseline (by 20% relative in 

average) and over the score stabilization method (by 7% relative in 

average). For the text independent experiment, the proposed 

method outperforms the baseline in almost all experiments, and 

outperforms the score stabilization method for smaller amounts of 

speakers in the development set.  

The superior results for score stabilization for larger amounts 

of speakers may hint that our proposed method should suppress 

more aggressively the total variability covariance matrix, probably 

to suppress other sources of variability, for instance, inter-imposter 

variability as been done in [13]. Note also that contrary to score 

stabilization, our proposed method does not directly suppress the 

noisy estimates of the variance parameters in score normalization.  
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