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ABSTRACT

Bidirectional long short-term memory (BLSTM) based speech syn-
thesis has shown great potential in improving the quality of the syn-
thetic speech. However, for low-resource languages, it is difficult
to obtain a high quality BLSTM model. BLSTM based speech syn-
thesis can be viewed as a transformation between the input features
and the output features. We assume that the input and output lay-
ers of BLSTM are language-dependent while the hidden layers can
be language-independent if trained properly. We investigate whether
sufficient training data of another language (auxiliary) can benefit
the BLSTM training of a new language (target) that has only limited
training data. In this paper, we propose 1) a multilingual BLSTM
that shares hidden layers across different languages and 2) a specific
training approach that can best utilize the training data from both the
auxiliary and target languages. Experimental results demonstrate the
effectiveness of the proposed approach. The multilingual BLSTM
can learn the cross-lingual information, and can predict more ac-
curate acoustic features for speech synthesis of the target language
than the monolingual BLSTM that is trained with only the data from
the target language. Subjective test also indicates that multilingual
BLSTM outperforms the monolingual BLSTM in generating higher
quality synthetic speech.

Index Terms— Speech synthesis, bidirectional long short-
term memory (BLSTM), low-resource, multilingual, cross-lingual

1. INTRODUCTION

In recent years, statistical parametric speech synthesis (SPSS)
has become popular because it has many advantages. Hidden
Markov model (HMM)-based speech synthesis, deep neural net-
works (DNN)-based speech synthesis and bidirectional long short
term memory (BLSTM) based speech synthesis are instances of
SPSS. HMM-based speech synthesis is effective to model the evo-
lution of speech signals as a stochastic sequence of acoustic feature
vectors [1] and can obtain a high quality acoustic model using even
a relatively small size corpus. On the other hand, DNN or BLSTM
has sophisticated network architecture and needs moderate or large
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corpus (phonetically and prosodically rich) to train a good model
[2, 3, 4]. Given that recording training data is often at great expense,
the available training data is always very limited, especially for
low-resource languages of a particular specific speaker.

To deal with the lacking training data problem, in HMM-based
synthesis, speaker adaptive training technique is proposed to train
an average voice model using different speakers’ training data and
then adapt the average voice model to a specific speaker [5]. [6]
investigated the similar technique in DNN-based speech synthesis
utilizing multi-task learning [7] and transfer learning technologies.

In this paper, we propose a multilingual BLSTM, in which the
hidden layers are shared across different languages while the input
and output layers are language-dependent. The BLSTM recurrent
neural network can be considered as a model that learns a compli-
cated feature transformation through hidden layers and output layer.
BLSTM based speech synthesis can transform the linguistic features
to acoustic features. In BLSTM based synthesis, BLSTM can be
decomposed into hidden layers for linguistic features transformation
and output layers for acoustic feature regression. The shared hidden
layers and separate regression layer of each language in multilin-
gual BLSTM are jointly trained with two language corpora. Multi-
lingual BLSTM can then learn knowledge across multiple languages
and transfer the knowledge from one language to another.

2. BIDIRECTIONAL LSTM RECURRENT NEURAL
NETWORK (BLSTM)

A recurrent neural network (RNN) is able to deal with the correla-
tions between data points embodied in (time) sequential data. The
input vectors are fed into the hidden layer of RNN one at a time. The
hidden layer output activations of the last time step are also fed into
the hidden layer. In this way, the structure can exploit all the avail-
able input information up to the current time step. The feedforward
process of RNN is:
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X = (X1, ..., X7) is the input vector sequence, h = (hy, ..., hr) is the
hidden state vector sequence computed from input vector sequence,
andy = (yq,...,¥r) is the output vector sequence. 7 is the ac-
tivation function for hidden state. Wy, Wy, and Wy, represent
the input-hidden, hidden-hidden and hidden-output weight matrices
repectively. by, and by denote the bias vectors for hidden state vec-
tors and output vectors.
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Fig. 1. Bidirectional recurrent neural network (BRNN).

The disadvantage of RNN is that it can only access the previous
inputs. Bidirectional RNN (BRNN) can access both previous and
future inputs utilizing the bidirectional architecture [8], as shown in
Fig. 1. The feedforward process of BRNN include forward E), and
backward hidden sequence h .

In text-to-speech (TTS) synthesis task, the long time span con-
texts in an utterance need to be modeled. However, the RNN and
BRNN structure is only able to retain short term memory beacause
of the vanishing gradient problem. Long short term memory (LSTM)
[9] recurrent neural network is designed to tackle with long time lags.
An LSTM layer consists of memory blocks which are a set of con-
nected blocks. A single memory block is shown in Fig. 2. Each block
contains four types of units: one or more recurrently connected mem-
ory cells, input gate, output gate and forget gate. These three gates
are multiplicative units which simulate read, write and reset opera-
tions for memory cells. The feedforward process of LSTM is:
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Fig. 2. Long short term memory (LSTM) block.
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where o is a logistic function; i, f, o and c respectively represent
input gate, forget gate, output gate and cell memory [10].

We replace the hidden units in forward layer and backward layer
of BRNN by LSTM blocks to derive the bidirectional long short term
memory (BLSTM) recurrent neural network. This structure can ex-
ploit long term memories in both directions of a sequence.

3. APPROACHES

3.1. Monolingual BLSTM

A BLSTM based TTS synthesis approach was proposed by [4],
where BLSTM uses the converted linguistic features as input and
acoustic features as output. The BLSTM model can be considered
as a sophisticated transformation model that learns the relationships
between input linguistic features and output acoustic features. Fig.
3 shows two BLSTM models of language 1 and language 2 that are
trained separately. We call each model the monolingual BLSTM,
where the input linguistic features and the corresponding output
acoustic features of a BLSTM come from one single language. It
should be noted that different languages may have different linguistic
contextual information as input features. Hence, the input vectors of
monolingual BLSTM for different languages may be different.

Acoustic
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Fig. 3. Architecture of monolingual BLSTM.

3.2. Multilingual BLSTM

In the above monolingual BLSTM for TTS synthesis, the input and
output layers are language dependent. We assume that the hidden
layers (i.e. the forward layer and the backward layer) of a BLSTM
can be language independent, which transform the input linguistic
features to an internal language independent representation. And
such internal representation can be shared across different languages.
With this assumption, we propose a multilingual BLSTM that shares
hidden layers across different languages and a specific training ap-
proach to train such multilingual BLSTM.

Fig. 4 shows the architecture of the proposed multilingual
BLSTM whose input layer and hidden layers are shared across dif-
ferent languages, while the output layer is not shared. Different
languages have their own output layers and related weight matrices
from hidden layers. Because each language may have its unique
linguistic features, different languages may correspond to different
dimensional input features. To solve such problem, the input feature
vectors of different languages are combined together to form a single
uniform representation of input features, as shown in the lower part
of Fig. 4. The dimension of the uniform input features equals to the



sum of the input feature dimensions of language 1 and language 2.
When the current input features are from language 1, the uniform
input features are constructed by concatenating language 1’s input
features with appending all zeros. The uniform representations of
language 2’s input features are similarly constructed by prepending
zeros to language 2’s real input features. Then multilingual BLSTM
accepts uniform input features to the input layer. The hidden layers
of multilingual BLSTM are perceived as feature transformations and
can be shared across languages. The shared hidden layers of differ-
ent languages can transform the uniform input features to internal
representation that can provide benefits to both languages. The out-
put layers then use the commonly internal representations to predict
the acoustic features of different languages.

As we can see, multilingual BLSTM is trained with speech data
from both low-resource (or resource-limited) language and resource-
rich language (with sufficient training data). This strategy is a kind of
multi-task learning: the tasks of resource-limited and resource-rich
languages are trained simultaneously. The cross-lingual information
captured by the hidden layers of multilingual BLSTM leads to better
performance in TTS than the monolingual BLSTM.

4. EXPERIMENTS

4.1. Experimental setup

The CMU_ARCTIC_SLT corpus is used as English (ENG) record-
ings. To verify that our proposed approach can learn cross-lingual
transfer information of different languages pairs, Mandarin (MAN)
and Cantonese (CAN) corpora that were recorded by different fe-
male speakers in broadcast news reading style are adopted in our
experiments. Each corpus is phonetically and prosodically rich. Ta-
ble 1 shows statistics of the utterance numbers for each corpus. The
English corpus consists of 550 speech utterances, with each utter-
ance having around 15 words. The Mandarin and Cantonese corpora
both contain 2,000 sentences of speech utterances, with average 20
Chinese syllables for each utterance. For the 550 English speech
utterances, 500 utterances are used as the training set for TTS syn-
thesizers, while the remaining 50 utterances serve as the test set. We
have two language pairs in our experiments, Mandarin-English and
Cantonese-English for multilingual BLSTM training and evaluation.
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Fig. 4. Architecture of multilingual BLSTM.
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Table 1. Usterance number in each corpus of different languages.

Language Numbers
English 550

Mandarin 2000

Cantonese 2000

All speech recordings are stored as Microsoft wave file with the
sampling rate of 16 kHz. The acoustic features are then extracted
with a frame window of 25 ms length, and frame shift of 5 ms, 35 or-
der Mel Generalization Cepstrum (MGC), voiced/unvoiced (V/UV)
flag, log-FO together with their delta and delta-delta deviations are
extracted, which serve as the acoustic parameters for TTS synthesiz-
ers. As for the linguistic features, the phonetic and prosodic contexts
of English include quin-phone, stress of syllable, the position of a
phone, syllable and word in phrase and sentence, the length of word
and phrase, TOBI and POS of word, with 503 dimensions in total;
and the phonetic and prosodic cotntexts of Mandarin and Cantonese
include tri-syllable, the tone of the syllable, the position of a syllable
in prosodic word, prosodic phrase, intonational phrase and sentence,
the length of prosodic word, prosodic phrase, intonational phrase and
sentence, totalling 806 and 797 dimensions respectively.

To conduct the experiments, 3 kinds of TTS synthesizers are to
be compared, including HMM-based, monolingual BLSTM-based
and multilingual BLSTM-based synthesizers.

In HMM-based TTS, each HMM phone model is five-state, left-
to-right topology with single Gaussian, diagonal covariance distribu-
tions. 35 order MGC , V/UV flag and log-FO with their delta and
delta-delta are simultaneously modeled using the context-dependent
HMMs. A decision tree-based context clustering algorithm is used
to cluster HMM states using the minimum description length (MDL)
[11] criterion. The parameters of HMM models are first trained us-
ing the maximum likelihood (ML) sense and then retrained by the
minimum generation error (MGE) [12]. 500 utterances in the train-
ing set of English corpus were used to train the HMM models. For
speech synthesis, a parameter generation module [13] is used to gen-
erate smooth feature parameters with dynamic feature, and then feed
to the STRAIGHT [14] vocoder to generate synthetic speech.

In monolingual BLSTM based TTS, the training data is still 500
English utterances in the training set. The input feature vector in-
cludes 503 dimensions of phonetic and prosodic contextual informa-
tion. The output feature vector contains a voiced/unvoiced (V/UV)
flag, log-FO, MGC, totally 37dimesions. At synthesis stage, the out-
put features predicted by the BLSTM directly serve as the acoustic
parameters of the vocoder input.

For multilingual BLSTM based TTS, the 2,000 utterances of
Mandarin (Cantonese) are used as the training data of language 1
(auxiliary language), while the 500 English utterances in the training
set are used as the training data of language 2 (target language). In
multilingual BLSTM, we use two bidirectional LSTM layers with
100 units for each layer to capture the long time span contextual
effect of the training data. For BLSTM training, we use Rmsprop
[15] to minimize the mean square error between the output features
and groundtruth. Rmsprop is a form of stochastic gradient descent
in which the gradient is normalized by the magnitude of recent gra-
dients. It is robust by utilizing pseudo curvature information. It is
also applicable of using mini batch learning for it can nicely handle
stochastic objectives.



‘We use RNNLIB [16] as the implementation of our monolingual
or multilingual BLSTM neural network, and HTS [17] for HMM-
based speech synthesis.

4.2. Experimental results and analysis

To evaluate the performance of the proposed multilingual BLSTM,
we conducted a set of objective and subjective evaluations on the 50
English utterances from the test set.

To verify that multilingual BLSTM trained with resource-rich
and resource-limited training data can increase the prediction accu-
racy of the acoustic features of resource-limited language over the
monolingual BLSTM trained using only the resource-limited speech
data, following objective experiments were conducted. As the most
popular SPSS method, the HMM-based method is also compared.

Table 2. Objective evaluation results on HMM, monolingual, mul-
tilingual MAN-ENG and multilingual CAN-ENG BLSTM.

Measures | LSD | V/U Err | FO RMSE
Model (dB) | rate (%) (Hz)
HMM 5.16 7.9 21.3
Monolingual 7.23 11.3 29.3
MAN-ENG 5.94 8.9 22.5
CAN-ENG 5.84 9.1 23.1

For objective evaluation, we calculate the distortions between
the acoustic parameters of the original test utterances and the pre-
dicted parameters by different models (HMM, monolingual BLSTM
or multilingual BLSTM). The distortions are calculated frame by
frame and then averaged on all frames of the test set. For FO,
root mean-square error (RMSE) is calculated. For voiced/unvoiced
(V/UV), swapping error rate is counted. Normalized distance in log
spectral distance (LSD) is computed for spectrum distortion.

The results of objective evaluations are shown in Table 2. For
both language pairs, multilingual BLSTM outperforms monolingual
BLSTM in predicting all acoustic parameters and such improvements
are significant. This indicates that the proposed multilingual BLSTM
can really learn the cross-lingual transfer information. Furthermore,
different resource-rich auxiliary languages (Mandarin or Cantonese)
with same amount of data can provide similar performance boost.
However, multilingual BLSTM-based method still shows slightly
worse performance than the traditional HMM-based method, which
might suggest that more parameters in BLSTM should be learnt.

Meutral {25%3)

Meutral {23%)

Fig. 5. Preference on Mandarin-English (above) and Cantonese-
English (below) multilingual BLSTMs and monolingual BLSTM.

For subjective evaluation, we performed AB preference test be-
tween monolingual BLSTM English TTS and multilingual BLSTM
Mandarin-English (or Cantonese-English) TTS. For each test sen-
tence, we generated paired synthetic speeches from English mono-
lingual BLSTM, Mandarin-English (or Cantonese-English) multilin-

5548

gual BLSTM synthesizers. Each pair of the synthetic speeches were
randomly played in a sound-proof studio. Ten listeners were invited
to listen to the synthetic speeches, and judge the quality of which
speech is better. The listener can also select no preference if it is
difficult to distinguish which one is better.

From the preference scores in Fig. 5, we can see that the quality
of the synthetic speech generated by the multilingual BLSTM outper-
forms the quality of the synthetic speech by monolingual BLSTM,
which validates the effectiveness of the proposed method

Table 3. Objective evaluation results on different number of the
training utterances.

Measures | LSD | V/U Err | FO RMSE
Utterances (dB) | rate (%) (Hz)
250 6.89 9.7 25.9
200 7.29 11.2 28.5
150 8.17 12.1 30.2
120 9.23 12.9 33.5
100 9.81 13.5 35.2

For speech synthesis of low-resource languages, it would be
valuable to find the least amount data for generating synthetic speech
with satisfied speech quality. Based on the above experimental setup,
we tried to reduce the amount of the training data of English in mul-
tilingual BLSTM (for Mandarin-English pair). We tried different
settings of the number of the training utterances, from 500, 250,
200, 150, 120, 100. The objective measures of different settings are
shown in Table 3. As can been see, when the number of training ut-
terances is about 150 utterances (amount to 7 minutes), LSD is 8.17,
voiced/unvoiced swapping errors is 12.1 and RMSE is 30.2. These
measurements are closes to the performance of the monolingual
BLSTM TTS engine trained with 500 utterances.

5. CONCLUSIONS

In this paper, we proposed a multilingual BLSTM that shares hid-
den layers across different languages. With this architecture, the
cross-lingual information can be learned and benefit the train-
ing of a TTS synthesizer for low-resource or resource-limited
languages. The experiments with two language pairs (Mandarin-
English, Cantonese-English) validates the effectiveness of the pro-
posed method. Both objective and subjective evaluations indicate
that multilingual BLSTM can predict more accurate acoustic features
for speech synthesis than the monolingual BLSTM. Future work will
be focused on whether such multilingual BLSTM network can be
used for cross-lingual speech synthesis.
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