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ABSTRACT

We have successfully proposed to use multi-speaker mod-
elling in DNN-based TTS synthesis for improved voice qual-
ity with limited available data from a speaker. In this pa-
per, we propose a new speaker and language factorized DNN,
where speaker-specific layers are used for multi-speaker mod-
elling, and shared layers and language-specific layers are em-
ployed for multi-language, linguistic feature transformation.
Experimental results on a speech corpus of multiple speakers
in both Mandarin and English show that the proposed factor-
ized DNN can not only achieve a similar voice quality as that
of a multi-speaker DNN, but also perform polyglot synthesis
with a monolingual speaker’s voice.

Index Terms— statistical parametric speech synthesis,
deep neural networks, speaker and language factorization,
polyglot speech synthesis

1. INTRODUCTION

When data is collected from different speakers, languages and
speaking styles, how to train Text-to-Speech (TTS) system
effectively and efficiently becomes an interesting research
topic.

The voice characteristics of speakers and languages are
two dominant factors in Text-to-Speech (TTS) synthesis.
Factorizing and integrating the speaker and languages depen-
dent parts may make TTS more versatile to synthesize any
speaker’s voice in any language. Zen et al. [1] proposed
the speaker and language factorization (SLF) framework to
factorize the speaker and language characteristics for HMM-
based TTS. First, non-polyglot speaker’s voice becomes poly-
glot in multiple languages. Second, one speaker’s voice with
limited data can be pooled with multiple speakers in different
languages. Third, new languages can be adapted with only
limited data.

Deep Neural Networks (DNNs) have advanced paramet-
ric Text-to-Speech (TTS) synthesis to a new frontier [2, 3, 4,
5, 6, 7, 8, 9, 10]. Zen et al. [2] investigated DNN-based TTS
and comprehensively pointed out some intrinsic limitations of
the conventional HMM-based speech synthesis, e.g. decision-
tree based contextual state clustering. They showed that, on

a rather large training corpus (∼ 35,000 sentences), DNN can
yield better TTS performance than its GMM-HMM counter-
part with a similar number of parameters. Qian et al. [7]
examined various aspects of DNN-based TTS training with
a moderate size corpus (∼ 5,000 sentences), which is more
commonly used for parametric TTS training. Fan et al. [8]
introduced LSTM-based RNN into parametric TTS synthe-
sis, which uses deep structure for state transition modeling
and upgrades the acoustic model from frame level to sequence
(sentence) level.

In DNN-based TTS, DNN is used as regression model
to map input linguistic features to output acoustic features.
DNN can be viewed as layer-structured model, which jointly
learns a complicated linguistic feature transformation in mul-
tiple hidden layers to a speaker-specific acoustic space. For
DNN-based TTS, the concept of speaker factorization has
been introduced in the multi-speaker DNN [9], in which all
speakers share the same hidden layers and each speaker has a
speaker-specific output layer. In multi-speaker DNN, network
is decomposed into two parts: shared hidden layers which is
used for linguistic transformation and speaker-specific layers
which factorize the speaker characteristics in the data. The
shared hidden layers across all speakers, which are popu-
lated with more linguistic diversities, are expected to yield
an enriched linguistic to acoustic transformation to improve
synthesized voice quality. Meanwhile, speaker adaptation
with limited speech can also benefit by freezing the speaker-
independent hidden layers and re-training the output layer
only.

In this paper, we propose a speaker and language fac-
torization framework for DNN-based TTS. The framework
takes the advantages of the layer-wise structure and the flex-
ible topology in DNN, and decomposes the network into
three independent functional layers: language-specific layers;
shared layers and speaker-specific layers. The modularized
DNN gets the structural flexibility for modelling and synthe-
sizing voice with any speaker and language characteristics.
Language-specific layers exploiting with multiple speakers’
data in specific languages and speaker-specific layers popu-
lated with multiple languages’ data from specific speakers be-
come more robust than separated and independent modelling.
Shared layers serve as a bridge to connect the language and
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speaker-specific layers. The barrier between languages and
speakers is unblocked and monolingual voice can become
polyglot, i.e., synthesizing speech in different language.

2. DNN-BASED SPEECH SYNTHESIS
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Figure 1 shows an overview of the DNN-based speech synthesis system, which contains two 

stages, the training and synthesis stage. 
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Fig. 1. Framework of DNN-based TTS synthesis.

Figure 1 shows a block diagram of a DNN-based speech
synthesis system, which consists of both training and syn-
thesis. In training, the acoustic features for DNN input are
first extracted from the speech signal with the feature ex-
traction module and the linguistic features for DNN output
are converted from the contextual labels generated through
text analysis. The parameters of DNN are trained by using
pairs of input and output features with a mini-batched, back-
propagation algorithm. The cost function is defined as the er-
rors between the original acoustic features and the predicted
outputs of each frame in the training data. In synthesis, in-
put text is first analyzed into labels, then mapped onto the
acoustic features by the trained DNN. In order to generate
smooth parameter trajectories, dynamic features are used as
constraints in speech parameter generation, where predicted
features are used as mean vectors and global variances of the
training data are adopted for generating speech parameters by
maximizing the probability. Finally, the speech waveform is
synthesized from the generated parameters with a vocoder.

3. SPEAKER AND LANGUAGE FACTORIZATION

DNN is a layer-structured model equipped with stacked mul-
tiple layers of linear transformations and non-linear activa-
tions, where linear transformation can also be built to connect
between any two activations. So the speaker and language
factorization in DNN-based TTS can be achieved by speci-
fying transformations for any specific speaker in any specific
languages.

3.1. Model Structure

Figure 2 shows the topology of DNN factorized in speaker
and language factorization. In this framework, DNN is struc-
tured in three major layers: language-specific layers, shared
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Fig. 2. DNN topology for speaker and language factorization.

layers and speaker-specific layers. Each layer can have mul-
tiple hidden layers. Language-specific layers are built to
have a specific transformation for each language. Similarly,
speaker-specific layers have a specific transformation for
each speaker. Shared layers are both speaker and language
independent. The linguistic features will first go through the
language-specific layers which the features belong to, then
pass through the shared layers, finally predict the speaker
specific acoustic features with the corresponding speaker-
specific layers.

Formally, the factorized DNN for speaker s in language l,
denoted as Fl,s(·), can be decomposed to

y = Fl,s(x) = Ss(H(Ll(x)))

where x is the linguistic input feature vector; y is the acous-
tic output feature vector; and Ll(·), H(·), Ss(·) are the
language-specific layers for language l, shared layers and
speaker-specific layers for speaker s, respectively.

In this framework, the language-specific layers are trained
by multiple speakers’ voices as multi-speaker DNN [9],
which will benefit the speakers whose data are limited. Sim-
ilarly, the speaker-specific layers are trained by the specific
speaker’s data in different languages, which will also benefit
the languages which are under-resourced.

3.2. Model Training

Training of the speaker and language factorized DNN is still
based on the mini-batched stochastic gradient decent (SGD)
algorithm as the conventional DNN. For each linguistic and
acoustic feature pair of speaker s in language l, only the re-
lated parts’ gradient in the network will be computed for up-
date, while gradient of the rest will be set to zero. Mini-
batched parallelization is used to speed up the neural network
training. In our proposed DNN, data from different speakers
and languages needs different parts of network for calcula-
tion, so that parallelization becomes very hard.

To achieve efficient parallelization, model structure must
be identical to data from all the speakers and languages.
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Hence, we replace selective operations in model updates by
multiplication and summation. Formally, the factorized DNN
becomes

y = Fl,s(x) =

N∑
i=1

siSi(H(
M∑
j=1

ljLj(x)))

where s and l are the one-hot vectors to indicate speaker
and language identity, respectively. The uniform structure
for all the speakers and languages can be directly applied in
mini-batched parallelization. Although it introduces some re-
dundant computations for irrelevant speakers and languages,
the efficiency of parallelization makes the redundancy worth-
while.

3.3. Polyglot

In speaker and language factorized DNN, modules from dif-
ferent parts can be arbitrarily combined to synthesized voice
of any speaker in any language, that is, all speakers’ voices
can perform polyglot speech synthesis in the languages cov-
ered in training. The speaker and language independent
shared layers play a crucial role in the proposed polyglot
synthesis. In the layer-wise structure of DNN, there are
no connections among the nodes in the same hidden layer,
so that the nodes in the same layer behave uncorrelated.
Without the shared layers, the intermediate nodes between
speaker-specific and language-specific layers may be speaker
or language dependent, which makes the modules in factor-
ized DNN unable to transfer to unseen speaker or language.
The shared hidden layers rebuild the relations among the
intermediate nodes and make the polyglot speech synthesis
possible.

4. EXPERIMENTS

4.1. Experimental Setup

A corpus of 3 native Mandarin speakers, including 2 females
and 1 male, who can also speak English, is used in our exper-
iments. The corpus, in which the text is got from one year’s
newspaper by brute-forth search algorithm, is both phoneti-
cally and prosodically rich. Each speaker has 900 utterances
in Mandarin and 900 utterances in English for training, and 40
utterances in Mandarin and 40 utterances in English for test-
ing. The average length of the utterances is 3s. The sentences
are uttered in the style of reading. Speech signals are sampled
at 16 kHz, windowed by a 25-ms window, and shifted every
5-ms. An LPC of 40th order is transformed into static LSPs
and their dynamic counterparts. The phonetic and prosodic
contexts include quin-phone, the positions of a phone, sylla-
ble and word in phrases and sentences, the length of a word
and a phrase, stress of a syllable, POS of a word.

In training DNN, the Mandarin input feature vectors con-
tain 611 dimensions, among them 576 are binary features for

categorical linguistic contexts and the rest are numerical lin-
guistic contexts, while the English input feature vectors con-
tain 331 dimensions, where 304 are binary features. The out-
put feature vector contains a voiced/unvoiced flag, log F0,
LSP, gain and their dynamic counterparts, in a total of 127
dimensions. Voiced/unvoiced flag is a binary feature to in-
dicate the voicing status of the current frame. DNN is set
with 3 hidden layers and 1024 nodes for each layer. An ex-
ponential decay function is used to interpolate F0 in unvoiced
regions. 80% of silence frames are removed from the training
data to balance the training data and to reduce the computa-
tional cost. Removing silence frames in DNN training was
found useful for avoiding DNN over-learning the silence la-
bel in speech recognition task. Both input and output features
of training data are normalized to zero mean and unity vari-
ance. DNN training is based on the computational network
toolkit (CNTK) [11].

For testing, DNN outputs are fed into a parameter gener-
ation module to generate smooth parameter trajectories with
the dynamic constraints. Then formant sharpening, based on
LSP frequencies, is used to reduce the over-smoothing prob-
lem in statistical parameter modeling and the resultant “muf-
fled” speech. Finally speech waveforms are synthesized with
an LPC synthesizer.

Objective and subjective measures are used to evaluate
the performance of TTS systems on testing data. Synthesis
quality is measured objectively in terms of distortions be-
tween natural test utterances of the original speaker and the
synthesized speech frame-synchronously where oracle state
durations (obtained by forced alignment) of natural speech
are used. The objective measures are F0 distortion in the
root mean squared error (RMSE), voiced/unvoiced (V/U) er-
rors and normalized spectrum distance in log spectral distance
(LSD). The subjective measures are used to measure the nat-
uralness and speaker similarity. In the naturalness subjective
test, each subject is to compare natural speech with synthe-
sized speech and give a 5-point score, from 1 (“bad”) to 5
(“excellent”). The speaker similarity is measured similarly,
from 1 (“very different”) to 5 (“very close”). Mean opinion
score (MOS) indicates the summarized measurements.

4.2. Evaluation Results and Analysis

4.2.1. Network topology

The number of layers in the speaker, language and shared lay-
ers of the factorized DNN determines the network topology
and corresponding performance. In this section, we take all
three speakers’ bilingual voices for training. Considering the
size of training corpus, we evaluate different combinations of
topologies for the proposed factorized DNN based on a struc-
ture of 3 hidden layers and 1 output layer.

Table 1 shows the average objective test results of the
three speakers and two languages for the factorized DNN in
different topologies. In Table 1, L, H, S denote the number of
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Table 1. Objective Measures of speaker and language factor-
ized DNN in different topologies

Topologies LSD V/U Err F0 RMSE
L H S (dB) (%) (Hz)
1 2 1 4.49 2.39 26.8
1 1 2 4.60 2.46 27.2
2 1 1 4.49 2.39 26.4
Multi-speaker 4.44 2.36 26.3

linguistic, shared and speaker layers, respectively. From the
objective results, factorized DNN with 2 linguistic-specific
layers, 1 shared layer and 1 speaker-specific layer gets the
best performance and is similar to the multi-speaker DNN
[9], which builds multi-speaker network for Mandarin and
English separately.

In the subjective test, we compare the factorized DNN
with the optimal topology, multi-speaker DNN on mono-
language and recording by naturalness MOS. For different
systems, speakers and languages, 120 judgements by 10 sub-
jects of native speakers are performed.

2

2.5

3

3.5

4

4.5

S1 L1 S2 L1 S3 L1 S1 L2 S2 L2 S3 L2

Factorized DNN Multi-speaker DNN Recording

Fig. 3. Naturalness MOS test results of speaker and language
factorized DNN.

Figure 3 shows the naturalness MOS results for all three
training speakers: S1 (female), S2 (male) and S3 (female),
and two languages: L1 (English) and L2 (Mandarin). The
proposed factorized DNN behaves almost the same as the
multi-speaker DNN in naturalness test, which indicates the
factorized DNN can benefit the synthesis quality with multi-
ple speakers’ voice as multi-speaker DNN and build transfor-
mations for linguistic features in all the languages.

4.2.2. Polyglot Synthesis

To evaluate the capability of factorized DNN for polyglot syn-
thesis without the training data from multi-lingual speakers,
we remove the English data of S3 (female) from training and
conduct a naturalness MOS test and a similarity MOS test in
English for polyglot synthesis. DNN-based monolingual syn-
thesis is built upon the female speaker’s English recordings
and used as baseline. In both naturalness and similarity test,
we invited 10 native English subjects and each subject was to
evaluates 40 groups by using headsets.

Table 2. Subjective measures of polyglot synthesis.
Naturalness MOS Similarity MOS

Polyglot 2.44 2.13
Monolingual 2.69 2.71

Recording 3.71 5.00

Subjective results in Table 2 show that factorized DNN
can achieve polyglot synthesis without using speech data
from a multi-lingual speaker. In contrast to recording, the
naturalness of the polyglot synthesis is comparable with
DNN-based monolingual system, i.e., 2.44 vs. 2.69, while
the speaker similarity is lower but still acceptable, i.e., 2.13
vs. 2.71.

5. CONCLUSIONS

In this paper, we propose a speaker and language factorized
DNN. The factorized DNN can model voices of multiple
speakers in multiple languages simultaneously. The shared
layers in the middle of factorized DNN can exploit the com-
monalities among different languages and speakers so as to
transfer learned knowledge to a new speaker and language
combination. Experimental results on a corpus of multiple
speakers in both Mandarin and English show that the pro-
posed factorized DNN can achieve polyglot synthesis for
a monolingual speaker. Our future research will use more
speakers in more languages to evaluate the performance of
factorized DNN for TTS synthesis in a scale-up manner.
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