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ABSTRACT

In this paper, we present a voice conversion (VC) method that does
not use any parallel data while training the model. VC is a tech-
nique where only speaker specific information in source speech is
converted while keeping the phonological information unchanged.
Most of the existing VC methods rely on parallel data—pairs of
speech data from the source and target speakers uttering the same
sentences. However, the use of parallel data in training causes sev-
eral problems; 1) the data used for the training is limited to the
pre-defined sentences, 2) the trained model is only applied to the
speaker pair used in the training, and 3) mismatch in alignment may
happen. Although it is, thus, fairy preferable in VC not to use par-
allel data, a non-parallel approach is considered difficult to learn. In
our approach, we realize the non-parallel training based on speaker-
adaptive training (SAT). Speech signals are represented using a
probabilistic model based on the Boltzmann machine that defines
phonological information and speaker-related information explicitly.
Speaker-independent (SI) and speaker-dependent (SD) parameters
are simultaneously trained using SAT. In conversion stage, a given
speech signal is decomposed into phonological and speaker-related
information, the speaker-related information is replaced with that of
the desired speaker, and then a voice-converted speech is obtained by
mixing the two. Our experimental results showed that our approach
unfortunately fell short of the popular conventional GMM-based
method that used parallel data, but outperformed the conventional
non-parallel approach.

Index Terms— Voice conversion, Boltzmann machine, unsu-
pervised training, speaker adaptation, SAT

1. INTRODUCTION

In recent years, voice conversion (VC), which is a technique used
to change speaker-specific information in the speech of a source
speaker into that of a target speaker while retaining linguistic in-
formation, has been garnering much attention since the VC tech-
niques can be applied to various tasks [1, 2, 3, 4, 5]. Most of the
existing approaches rely on statistical models [6, 7], and the ap-
proach based on Gaussian mixture model (GMM) [8, 9, 10, 11] is
one of the mainstream nowadays. Other statistical models, such as
non-negative matrix factorization (NMF) [12, 13], neural networks
(NNs) [14], restricted Boltzmann machines (RBMs) [15, 16], and
deep learning [17, 18], are also used in VC. However, almost all of
the existing VC methods require parallel data (aligned speech data
from the source and the target speakers so that each frame of the
source speaker’s data corresponds to that of the target speaker) for
training the models, which leads to several problems. First, the data

is limited to pre-defined articles (both speakers must utter the same
articles). Second, the trained model is only applied to the speaker
pair used in the training, and it is difficult to reuse the model on
the conversion of another speaker pair. Third, the training data (the
parallel data) is not the original speech data anymore because the
speech data is stretched and modified in the time axis when aligned.
Furthermore, it is not guaranteed that each frame is aligned perfectly,
and the mismatching may cause some errors in training.

Several approaches that do not use parallel data from the source
to the target speakers1 have been also proposed [19, 20, 21, 22]. In
[19], for example, they model the spectral relationships between two
arbitrary speakers (reference speakers) using GMMs, and convert
the source speaker’s speech using the matrix that projects the feature
space of the source speaker into that of the target speaker through
that of reference speakers. As a result, parallel data from the source
and target speakers is not required. In [21], codebooks (eigenvoice)
are obtained using the parallel data of reference speakers, and many-
to-many VC is achieved by mapping the source speaker’s speech into
eigenvoice and the eigenvoice into target speaker’s speech.

In this paper, we propose a totally-parallel-data-free2 VC
method using an energy-based probabilistic model and speaker
adaptive training (SAT). The idea is simple and intuitive. A speech
signal of an arbitrary speaker is considered to be composed of neutral
speech that only includes phonological information and is belong to
no one, accompanied with the speaker specific information. In this
assumption, VC is achieved by three steps: decomposing a speech
signal into neutral speech and speaker specific information, replac-
ing the speaker specific information with that of the desired speaker,
and composing a speech signal using the neutral speech and the
speaker information replaced. The proposed model, called a speaker
adaptive trainable Boltzmann machine (SATBM), is designed to
help such decomposition.

We have tackled the non-parallel training using another prob-
abilistic model named adaptive Boltzmann machine (ARBM) [23]
in our previous work, too. The architecture is different from the
proposed model in this paper, which makes some differences; e.g.
while an ARBM is based on model-space transformation, a SATBM
is based on constrained model-space transformation. In the follow-
ing sections we will discuss more about this.

2. FORMULATION

In general, it is known that the differences of speech signals in terms
of speakers can be represented as multiplication. After the general

1Note that they still require parallel data among reference speakers.
2It means that the method requires neither the parallel data of a source

speaker and target speaker, nor the parallel data of reference speakers.
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form, we define an acoustic feature vector x̂rt ∈ RD (D is the num-
ber of dimensions) of a speaker r at the time t as follows:

x̂rt = Arxt + br, (1)

where xt ∈ RD , Ar ∈ RD×D and br ∈ RD denote the speaker-
normalized acoustic feature vector (acoustic features of the neutral
speaker), a speaker adaptation matrix and a bias vector of the speaker
r, respectively. Here, we assume that xt is normally distributed with
time-varying mean µt ∈ RD and time-invariant diagonal variance
Σ = diag (σ2),σ2 = [σ2

1 , · · · , σ2
D] ∈ RD . At this time x̂rt is also

normally distributed; that is

x̂rt ∼ N (µ̂rt, Σ̂r),

µ̂rt = Arµt + br

Σ̂r = ArΣA>r .

(2)

The speech of the neutral speaker at a certain time is supposed
to be determined by the latent, phonological information that must
exist behind but is not observable. Therefore, we assume that the
mean vector of the neutral speaker µt is determined using a latent
phonological vector ht ∈ BH (B is a binary space and H is the
number of dimensions of the latent vector) as

µt = Wht + b, (3)

where W ∈ RD×H and b ∈ RD are a matrix and a bias vector that
project the phnological space into the acoustic space. Incidentally,
the conditional probability p(x̂rt|ht) given ht can be calculated as
follows:

p(x̂rt|ht) = N (µ̂rt, Σ̂r)

∝ e−
1
2
(x̂rt−µ̂r)

>Σ̂−1
r (x̂rt−µ̂r)

∝ e−{
1
2
(x̂rt−b̂r)>Σ̂−1

r (x̂rt−b̂r)−x̂>rtΣ̂
−1
r Ŵrh}, (4)

where we introduce b̂r = Arb+ br and Ŵr = ArW.
On the other hand, phonological information should be deter-

mined by acoustic features as well. It means hjt ∈ ht is Bernoulli
distributed and its parameter πjt ∈ πt (j = 1, · · · , H) that repre-
sents the probablity p(hjt = 1) should be a function of xt. When
it comes to formulize this, it is beneficial in reducing the number of
parameters to use the already-defined parameters. We define πt as
follows:

πt = φ(W>Σ−1xt + c), (5)

where φ(·) denotes an element-wise sigmoid function and c ∈ RH is
a bias term on phonological information that is independent on time.
Considering that xt = A−1

r (x̂rt − br) and Σ−1 = A>r Σ̂−1
r Ar ,

the conditional probability p(ht|x̂rt) forms incidentally as follows:

p(ht|x̂rt) = B(πt)

∝ e(W
>Σ−1A−1

r (x̂rt−br)+c)>ht

= e−(−x̂>rtΣ̂
−1
r Ŵrh−ĉ>r h), (6)

where we use the replacement of ĉr = c− Ŵ>
r Σ̂−1

r br .
Now we consider the joint probability of x̂rt and ht. Looking

at Eqs. (4) and (6), we notice that the same term −x̂>rtΣ̂−1
r Ŵrh

ht

W

Ar

· · ·

ht

· · ·

Ŵr

(a) (b)
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r
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xt
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Fig. 1. (a) Proposed model: SATBM (speaker-adaptive-trainable
Boltzmann machine) and (b) its simplified representation, which can
be seen as a sort of semi-RBM.

appears in the exponential. Consequently, the following joint proba-
bility satisfies Eqs. (4) and (6):

p(x̂rt,ht) =
1

Z
e−E(x̂rt,ht)

E(x̂rt,ht) =
1

2
(x̂rt − b̂r)>Σ̂−1

r (x̂rt − b̂r)

− x̂>rtΣ̂−1
r Ŵrht − ĉ>r ht,

(7)

where Z =
∫ D∑

ht
e−E(x̂rt,ht)dDx̂rt is a normalization term.

Furthermore, substituting (1) for (7) forms

p(xt,ht) =
1

Z
e−E(xt,ht)

E(xt,ht) =
‖xt − b‖22

2σ2
−
( xt
σ2

)>
Wht − c>ht,

(8)

which is nothing else but the definition of a Gaussian-Bernoulli re-
stricted Boltzmann machine (GB-RBM) [24]. In other words, the
model defined in Eq. (7) implies that it adapts the neutral speech to
that of a speaker r when using a GB-RBM with the visible units
of acoustic features of the neutral speaker and the hidden units of
latent phonological features, as shown in Fig. 1. In another view-
point, it can be regarded as a sort of semi-RBM [25] since there are
shared connections Ŵr between x̂rt and ht, and connections Σ̂−1

r

among x̂rt but no connections among ĥt (Fig. 1 (b)). The differ-
ence is that the model in Eq. (7) assumes the existence of the neutral
speaker and defines additional parameters that enable speaker adap-
tive training. In this paper, we call the probabilistic model defined
in Eq. (7) speaker-adaptive-trainable Boltzmann machine (SATBM).
In our previous work [23], we have proposed another probabilistic
model named adaptive restricted Boltzmann machine (ARBM) that
is an extension of an RBM where only the connection weights be-
tween the visible and hidden units are speaker-adaptive. The ARBM
is based on model-space transformation, whereas the SATBM is
based on model-space transformation and also feature-space trans-
formation (i.e., constrained model-space transformation), as Eqs. (1)
and (2) indicate. In another perspective, the SATBM directly models
the correlations between the dimensions in observed features while
the ARBM does not. For this reason, we expect the SATBM would
be superior in acoustic modeling to the ARBM.
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3. PARAMETER ESTIMATION BASED ON SAT

In this section, we describe the way of the parameter estimation in
the previously-defined model, a SATBM, based on speaker adap-
tive training (SAT) [26]. For convenience, we use symbols ΘSD =
{Ar, br}Rr=1 for speaker-dependent (SD) parameters and ΘSI =
{W,σ2, b, c} for speaker-independent (SI) parameters. Given a
collection of the speech data X = {Xr}Rr=1, Xr = {x̂rt}Tr

t=1

that is composed ofR speakers, these parameters are simultaneously
estimated so as to maximize the likelihood as

(Θ̂SD, Θ̂SI) , argmax
(ΘSD,ΘSI )

R∏
r=1

Tr∏
t=1

p(x̂rt). (9)

According to the SAT paradigm, the SD parameters ΘSD undertake
the speaker-induced variation, and the SI parameters ΘSI capture
the remaining information; i.e., phonetically-relevant variation. Un-
like the conventional SAT+MLLR (maximum likelihood linear re-
gression), the SATBM explicitly models the relationships between
the speaker-normalized acoustic features and the phonological in-
formation, which implies the possibility that the model represents
the speech data more than SAT+MLLR.

The parameters are iteratively updated based on gradient de-
scent. The partial differential of the log-likelihood l = log

∏
r

∏
t p(x̂rt) =∑

r

∑
t log

∑
h p(x̂rt,ht)) in terms of a parameter θ ∈ {ΘSD,ΘSI}

is derived as follows:

∂l

∂θ
=
∑
r

(〈∂E(x̂rt,ht)

∂θ
〉data − 〈

∂E(x̂rt,ht)

∂θ
〉model),

where 〈·〉data and 〈·〉model denote expectations of the empirical data
and the inner model, respectively. It is generally difficult to com-
pute the expectations of the inner model; however, we can still use
contrastive divergence (CD) [27] and efficiently approximate them
with the expectations of the reconstructed data. We can analytically
calculate the partial gradients ∂E(x̂rt,ht)

∂θ
for each parameter as fol-

lows:

∂E(x̂rt,ht)

∂Ar
= −1

2
(A−1

r CrtΣ̂
−1
r + Σ̂−1

r DrtA
−>
r )

∂E(x̂rt,ht)

∂br
= −Σ̂−1

r (x̂rt − b̂r − Ŵrht)

∂E(x̂rt,ht)

∂W
= −A>r Σ̂−1

r (x̂rt − br)h>t
∂E(x̂rt,ht)

∂σ2
= −1

2
diag(A>r Σ̂−1

r ErtΣ̂
−1
r Ar)

∂E(x̂rt,ht)

∂b
= −A>r Σ̂−1

r (x̂rt − b̂r)

∂E(x̂rt,ht)

∂c
= −ht,

where

Crt =(x̂rt − br)(x̂rt − b̂r − 2Ŵrht)
>

Drt =(x̂rt − b̂r)(x̂rt − br)>

Ert =(x̂rt − b̂r)(x̂rt − b̂r)> − 2(x̂rt − br)(Ŵrht)
>.

4. APPLICATION TO VC

When it comes to use the proposed model for VC, we follow three
stages of training, adaptation, and conversion. In the training stage,

speaker-independent parameters Θ̂SI are obtained as in Eq. (9) us-
ingR reference speakers’ speech (We discard the speaker-dependent
parameters Θ̂SD). In the adaptation stage, new speaker-dependent
parameters ΘSD

i = {Ai, bi} and ΘSD
o = {Ao, bo} are estimated

using adaptation data of the source and the target speakers {x̂it}Tit=1,
{x̂ot}Tot=1 with keeping Θ̂SI fixed. That is,

Θ̂SD
r , argmax

ΘSD
r

Tr∏
t=1

p(x̂rt;Θ
SD
r , Θ̂SI), r ∈ {i, o}. (10)

In order to convert the frame-wise acoustic feature vector of the
source speaker xit into that of the target speaker xot, we take an
ML-based approach. In this approach, xot is computed so as to
maximize the probability given xit, formulated as

xot , argmax
xot

p(xot|xit)

= argmax
xot

∑
ht

p(ht|xit)p(xot|ht)

' argmax
xot

p(ĥt|xit)p(xot|ĥt)

= argmax
xot

p(xot|ĥt)

= AoWφ(W>Σ−1A−1
i (xit − bi) + c) + Aob+ bo,

(11)

where we give ĥt , argmax
ht

p(ht|xit). It is worth noting that the

conversion function is based on non-linear tranformation.

5. EXPERIMENTAL EVALUATION

5.1. System configuration

In our VC experiments, we evaluated the performance of our model,
a SATBM, using ASJ Continuous Speech Corpus for Research (ASJ-
JIPDEC3). In the training stage where the SI parameters are esti-
mated, we randomly selected and used speech data of 5 sentences
(approx. 160k frames) uttered by 56 speakers (26 males and 30 fe-
males) from the set A in the corpus. For adaptation and evaluation,
a male and a female speakers that were not included in the train-
ing were used as a source and a target speakers, respectively. The
amount of the adaptation data was 5 sentences for each person. As
an acoustic feature vector, we used 64-dimensional mel-cepstral fea-
tures that were calculated from 513-dimensional STRAIGHT [28]
spectra without dynamic features. In the training of the system, we
used 96 hidden units, a learning rate of 0.01, a momentum of 0.9,
and a batch-size of 1000, and set the number of iterations as 15 in
order to avoid overfitting (already converged). For the evaluation
of the proposed method, we used parallel data (of different 10 sen-
tences from in the training and adaptation data) of the source and
the target speakers, which was created using dynamic programming.
But again, note that every speech data used for the training and the
adaptation is NOT parallel.

Mel-cepstral distortion (MCD) is generally used for objective
evalulation in VC. However, we used mel-cepstral distortion im-
provement ratio (MDIR) instead in this paper because it does not
make sense to see the distance between the spectral features in mel-
scale of the source and the target speakers when we want to recog-
nize the differences in speaker identities, and because the scale of

3http://research.nii.ac.jp/src/ASJ-JIPDEC.html

5532



Table 1. Average MDIR [dB] of each method in non-parallel VC
adapt. matrix full tridiag diagonal
linear 1.27 2.07 0.07
ARBM [23] — — 1.17
SATBM 2.24 2.60 2.19

MCD varies in the evaluation data. The MDIR is defined as follows:

MDIR[dB] =
10
√
2

ln 10
(‖mo −mi‖2 − ‖mo −mc‖2)

where mi, mo, and mc are mel-cepstral features at a frame of
the source speaker’s speech, target speaker’s speech, and converted
speech, respectively. The higher the value of MDIR is, the better the
performance of the VC is. The MDIR was calculated for each frame
from the parallel data of 10 sentences, and averaged.

5.2. Comparison methods

It is difficult to evaluate the proposed method because most of the
existing VC approaches use parallel data in training and comparing
our method that does not use parallel data with those methods is not
fair. Nevertheless, we can still compare the proposed method with
our earlier model, ARBM [23]. In addition, a linear-transform-based
approach, which has not been proposed, is interesting to compare
with. This approach is simple; the vector xot is calculated as

xot , AoA
−1
i (xit − bi) + bo, (12)

which was derived from the equation xt = A−1
i (xit − bi) =

A−1
o (xot − bo) starting with Eq. (1). However, it is under the as-

sumption that the true feature space of the neutral speaker was ob-
tained. The parameters Ar , br are estimated in SAT using gradi-
ent decent just the same as our proposed method. So the difference
between the linear-transform approach and the proposed model is
whether latent phonological features are modeled or not.

Just for a reference, we also compared with a popular GMM-
based VC with 64 mixtures using parallel data of 5 sentences.

5.3. Results and discussion

The VC performance of the linear-transform-based approach, the
ARBM, and the proposed model is summarized in Table. 1. Each
method is compared with changing the type of the adaptation matrix
Ar as a full-rank matrix, a tridiagonal matrix, and a diagonal ma-
trix. As shown in Table. 1, the proposed model with a tridiagonal
adaptation matrix performed best of all with any types of the adapta-
tion matrix. When we see the results of a diagonal matrix, the linear
approach hardly improved the source speech closed to the target one
because it was considered that the diagonal matrix could not cap-
ture the correlations between dimensions of the mel-cepstrum, which
makes impossible to match the vocal tracts. On the other hand, the
ARBM and the SATBM could get the source speech closed to the tar-
get voice more or less even when a diagonal adaptation matrix was
used due to modeling latent phonological information. The reason
why the full rank matrix degrades the MDIR was due to large num-
ber of parameters that caused overfiting. Furthermore, it is known
that the tridiagonal elements are sufficient for warping vocal tracts
[29]; hence we obtained better results from the case with a tridiago-
nal matrix in the linear and SATBM approaches.

Fig. 2. The ratios of voting for preference in subjective evaluation.

The average MDIR of the GMM-based approach was 3.86. Un-
fortunately, it was better performance than our approach. However,
such approach takes a benefit from the parallel data that restricts to
match the frames of the source and the target features. It can be
considered the influence of using no parallel data.

5.4. Subjective evaluation

We also conducted subjective experiments, comparing our method
with the ARBM and the linear-based approach using a diagonal
adaptation matrix for all methods. We decoded the the converted
mel-cepstra back to STRAIGHT spectra using filter-theory [30],
and generated signals using the original F0 and aperiodic features
of the target speaker since we wanted to compare each method in
spectra. In this experiments, 7 participants listened 10 sentences of
converted speech by the linear-based, the ARBM, and the SATBM
approaches accompanied with the target speech and voted for the
most preferable one for each sentence in terms of the speaker speci-
ficity of the target speaker. The ratios of voting of each method
are shown in Fig. 2. The SATRM and the ARBM obtained were
both outperformed the linear-based approach but produced the same
ratios unexpectedly. It can bs said that the SATBM and the ARBM
have the similar pottential in modeling speaker-specificity when a
diagonal adaptation matrix is used.

6. CONCLUSION

In this paper, we presented a VC method that does not require any
parallel data during training and adaptation according to the basic
idea of dividing a speech signal into phoneme-relevant and speaker-
relevant information, and replacing only the speaker-relevant infor-
mation with the desired one. To model this, we assumed that the
neutral speaker’s acoustic features are normally distributed, and its
mean is affin-transformed from the latent phonological features that
are Bernoulli-distributed. As a result, we showed that the joint prob-
ability of the acoustic features and the phonological features forms
a sort of a Boltzmann machine. We also showed the method of es-
timating the target speaker’s features given the source speaker’s fea-
tures in a probabilistic manner. In our VC experiments, we obtained
better performance with our model than the other non-parallel VC
approaches in objective criteria. However, we still have concerns
that the proposed approach fell short of the GMM-based approach
that uses parallel data in training. In the future we will continue
to improve the system (hopefully up to around the performance of
the GMM-based approach) in non-parallel VC because non-parallel
training has a lot of merits; e.g. we can freely use the most of exist-
ing speech data.
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