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ABSTRACT

Though recurrent neural networks (RNNs) using long short-term
memory (LSTM) units can address the issue of long-span dependen-
cies across the linguistic inputs and have achieved the state-of-the-art
performance for statistical parametric speech synthesis (SPSS), an-
other limitation of the intrinsic uni-Gaussian nature of mean square
error (MSE) objective function still remains. This paper proposes
a gating recurrent mixture density network (GRMDN) architecture
to jointly address these two problems in neural network based SPSS.
What’s more, the gated recurrent unit (GRU), which is much simpler
and has more intelligible work mechanism than LSTM, is also inves-
tigated as an alternative gating unit in RNN based acoustic modeling.
Experimental results show that the proposed GRMDN architecture
can synthesize more natural speech than its MSE-trained counterpart
and both the two gating units (LSTM and GRU) show comparable
performance.

Index Terms— Statistical parametric speech synthesis, gating
units, GRU, gating recurrent mixture density network

1. INTRODUCTION

HMM-based acoustic modeling [1] has been the mainstream ap-
proach in statistical parametric speech synthesis (SPSS) for decades
of years. Even though it has flexible and robust advantages [2] over
unit selection [3] approaches, the naturalness of synthesized speech
is still unsatisfying. Recently, deep neural networks (DNN) based
acoustic modeling techniques [4] have achieved state-of-the-art per-
formance in SPSS. In this approach, a deep network with many s-
tacked hidden layers is used to directly model the complex, nonlin-
ear mapping from linguistic inputs to acoustic outputs. The success
is attributed to its deep architecture that an HMM doesn’t possess.
A number of attempts based on DNNs for acoustic modeling have
been made [5, 6]. However, a feedforward DNN has its limitation
that the sequential nature of speech is ignored. Recurrent neural net-
works (RNNs) with long short term memory (LSTM) units [7, 8],
which have capacities to capture long-term dependencies across the
input sequences, have been recently employed to acoustic modeling
in SPSS [9, 10, 11].

The elaborately designed gating mechanism of LSTM is the ma-
jor contributor to its great success in many machine learning fields,
including speech recognition [12, 13], speech synthesis [9] and sta-
tistical machine translation [14]. Recently, a novel gated recurrent
unit (GRU) [15] has been proposed for RNN-based encoder in neu-
ral machine translation research. The new unit uses two gates (a
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reset gate and an update gate) to adaptively control the flow of in-
formation. Since its simpler architecture and more intelligible work
mechanism than LSTM’s, more attentions have been drawn from the
community [16, 17]. Comparable performance was reported com-
pared to LSTM and both the gating units have demonstrated notice-
able superiority over the traditional sigmoid/tanh activation function.
However, it has not been employed in SPSS yet.

In neural network based SPSS, there are at least two problems
affecting the acoustic accuracy: long-span dependencies in linguis-
tic sequences and distribution hypothesis of acoustic features. RNNs
with LSTM or GRU can address the first problem naturally. As for
the second problem, however, most of the RNN-based models in
SPSS are trained by minimizing the cost function of mean square
error (MSE) [9-11], which assumes the conditional distribution of
output acoustic features is a single Gaussian. This is problematic for
the prediction of acoustic features. It is known that the distribution of
acoustic features is multimodal as human speech can vary in differ-
ent styles given the same text. The conventional training approaches
of neural networks using MSE cannot learn to model any more com-
plex distributions of acoustic features than unimodal Gaussian dis-
tribution. A mixture density network (MDN) [18], which consists of
a feed-forward neural network whose outputs determine the param-
eters of a mixture density model conditioned on the input vector to
the neural networks, can alleviate the limited assumption and repre-
sent more accurate probability density functions of output features.
Zen et al [19] have investigated the use of DNN based MDN (DNN-
MDN) as an alternative acoustic model for SPSS and improved the
naturalness of the synthesized speech. Though the limited distribu-
tion hypothesis problem was addressed using MDN, the long-span
sequential problem still remains in the DNN-MDN model.

This paper proposes a novel gating recurrent mixture density
network (GRMDN), which combines the gating units (LSTM and
GRU) based RNNs with a mixture density model, to jointly ad-
dress the two problems mentioned above. To our knowledge, this
is the first time that these two problems are jointly addressed. An-
other novelty of our work is that GRU is investigated for the first
time in SPSS for its simpler architecture than LSTM. Experimen-
tal results demonstrate that improved accuracy of GRU-RNN based
acoustic modeling over DNN is achieved and both the two gating
recurrent networks, GRU-RNN and LSTM-RNN, show comparable
performance using MSE training criterion. To demonstrate the su-
periority of the proposed GRMDN, we further systematically com-
pare the modeling capacity of GRMDNs (GRU-MDN and LSTM-
MDN) with their conventional counterparts trained using MSE and
DNN-MDN, respectively for SPSS. Experimental results show that
the proposed architecture achieves the best naturalness of synthe-
sized speech among all the investigated systems.
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The rest of the paper is organized as follows. Section 2 describes
the GRMDN acoustic modeling technique for SPSS. Experimental
results and analysis are presented in Section 3, and Section 4 gives
the conclusions.

2. GATING RECURRENT MIXTURE DENSITY
NETWORKS

A standard recurrent network (SRN) with sigmoid or hyperbolic tan-
gent activation functions has the potential to model time sequences.
However, the vanishing problem [20] caused by these activation
functions prevents an SRN from learning long-span dependencies
across the sequential inputs. The elaborately designed gating unit-
s, LSTM1 and GRU as shown in Fig. 1, have demonstrated their
capacity in sequential tasks.

tx

1tr 

tx 1tr 

tx

tx

1tr

1tr 

tc
tg th tm tr

recu
rren

t

ti to

tf

tc

1tc 

1tc 

(a) LSTM

tx

1tr 

tx 1tr 

tx

tx

1tr

1tr 

tc
tg th tm tr

recu
rren

t

ti to

tf

tc

1tc 

1tc 

tx

tg

1th tx tx 1th 

th

tg

1

1z

1th 

th


tz tr

(b) GRU

Fig. 1. Architecture of LSTM and GRU.

2.1. Gated Recurrent Unit

The GRU was proposed by Cho et al [15] for encoder-decoder in
neural machine translation. Fig. 1(b) illustrates the GRU implemen-
tation adopted in this paper. The activations are updated by iterating
the following equations:

zt = sigm(Wzxxt +Wzhht−1 + bz) (1)

rt = sigm(Wrxxt +Wrhht−1 + br) (2)

gt = rt ◦ ht−1 (3)

h̃t = tanh(Whxxt +Whhgt + bh) (4)

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t (5)

where theW terms denote weight matrices, the b terms denote bias
vectors, r and z are respectively the reset gate and update gate, ◦ is
the elementwise multiplication; the output vector ht of the GRUs at
time t is a linear interpolation between the previous output ht−1 and
the current candidate output h̃t; gt is the gated feedback from the
previous output. One advantage of GRU is that it has less amount of
parameters than LSTM without degrading performance.

2.2. Mixture Density Network

As shown in Fig. 2, an MDN can be seen as using a neural network to
generate the parameters of a mixture model. Given a training sample
(x,y), the conditional probability density p(y|x,M)2 of the target

1This paper adopts the LSTM implementation in [8], where a recurrent
projection layer is appended after the LSTM cells. Due to limited space, we
don’t give a detailed description of LSTM here since the updating equations
are straightforward.

2For notation simplicity, the model symbol M in the following equations
is omitted.
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Fig. 2. Mixture Density Network.

data modeled by a mixture density network M can be represented
as a combination of kernel functions in the form

p(y|x) =
M∑
i=1

αi(x)φi(y|x) (6)

where M is the number of components in the mixture, αi(x) is the
mixing coefficient of the i-th component. This paper constrains the
kernel function to be Gaussian of the form

φi(y|x) = N(y;µi(x),σ
2
i (x)) (7)

where µi(x), σ2
i (x) correspond to respectively the mean, variance

of the i-th Gaussian. Given input x, the parameters of Gaussian
Mixture Model (GMM) can be achieved using following equations:

αi(x) =
exp(zαi (x))∑M
j=1 exp(z

α
j (x))

(8)

µi(x) = z
µ
i (x) (9)

σi(x) = exp(zσi (x)) (10)

where zαi (x), z
µ
i (x), z

σ
i (x) represent the corresponding network

outputs. The use of softmax function in Eq. (8) ensures that the
mixing coefficients are positive and sum to 1. Likewise, the ex-
ponential function applied in Eq. (10) constrains the deviations to
be positive. Unlike the conventional MSE criterion that minimizes
the square errors between the real outputs and targets, the MDN is
trained to maximizing the log likelihood of training data. Thus the
cost function is:

E =

N∑
n=1

ln p(yn|xn,M) (11)

where N is the number of training samples, n is the sample index.

2.3. Gating Recurrent Mixture Density Networks based SPSS

A GRMDN combines a gating recurrent network with a mixture
density model (e.g. GMM). The gating recurrent network is used
to capture long-span dependencies in the linguistic context and the
mixture density model can give a complete probability density of
the acoustic features. In SPSS, given a linguistic input sequence
x = (x1, . . . ,xT ) and the corresponding acoustic feature sequence
y = (y1, . . . ,yT ), we aim at maximizing the conditional probabil-
ity p(y|x), which factorizes as

p (y|x) = p (y1, . . . ,yT |x1, . . . ,xT )
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= p(y1|x1)·p (y2|y1,x1,x2) · · · p (yT |y1, . . . ,yT−1,x1, . . . ,xT )
(12)

under the assumption that each frame of acoustic feature is depen-
dent only on the current and past inputs. Further assuming output
frames are conditional independent of each other, we rewrite p(y|x)
as

p (y|x) = p (y1|x1) · p (y2|x1,x2) · · · p (yT |x1, . . . ,xT )

=

T∏
t=1

p(yt|x≤t) (13)

where p (yt|x≤t) can be efficiently modeled by a GRMDN. Howev-
er, a DNN-MDN or an MSE-trained RNN does not have the power.

The GRMDN based SPSS can be outlined as follows. First, a
text to be synthesized is converted into a sequence of phoneme-level
linguistic features through text analysis. Next, the frame-level fea-
tures of each phoneme are predicted using the duration model. Then
the phoneme-level and frame-level features are spliced together as
inputs to the well-trained GRMDN. Through propagation, a set of
parameters of GMM, the probability density over acoustic features
including spectral and excitation parameters and their dynamic coun-
terparts, can be obtained conditioned on each input vector. At each
frame, the mean and variance of the component that has the high-
est predicted mixing coefficient are selected to form a sequence of
acoustic features. Then the speech parameter generation algorithm
[21] can generate smooth trajectory of speech parameters which sat-
isfy the statistics of static and dynamic features. Finally, the speech
parameters are directly fed into a vocoder to synthesize speech.

3. EXPERIMENTS

3.1. Experimental Setups

A Mandarin speech database recorded by a female professional s-
peaker, both phonetically and prosodically rich, was used in our
experiments. The database consisted of 7266 training utterances
(around 7 hours, 90% as training set and the rest as developmen-
t set) and 38 extra utterances for evaluation. The speech data was
downsampled from 44.1 kHz to 16 kHz, then 41 line spectral pairs
(LSPs), 25 band aperiodicities (BAPs) and logarithmic fundamen-
tal frequency (log F0) were extracted every 5-ms using STRAIGHT
[22].

For all the neural networks based (NN-based) systems in this
paper, the input feature vector contained 462 binary features for cat-
egorical linguistic contexts (e.g. phonemes identities) and 64 nu-
meric features for numerical linguistic contexts (e.g. the number of
phonemes in current word). In addition to the phoneme-level lin-
guistic contexts, five binary features for states indices and a numeric
feature for the position of a frame in current state were appended to
form frame-level identities. Each acoustic feature vector included 41
LSPs, 25 BAPs, and interpolated log F0 , and their dynamic coun-
terparts. A voiced/unvoiced flag was also added to the output vector
to indicate the voicing condition of the current frame. For the train-
ing of NN-based systems, the input and output features were time-
aligned using an HMM aligner, which was first trained using max-
imum likelihood criterion and then refined by minimum generation
error (MGE) training to minimize the generation error between pre-
dicted and original parameter trajectories of the training data. Both
the input and output features were normalized to the range of [0.01,
0.99].

For comparison, three types of architectures, which were DNN,
LSTM and GRU respectively, were established, and each type was

Table 2. Preference scores (%) of different compared pairs of sys-
tems. Due to limited space, the system ID corresponding to the sys-
tem in Table 1 is used. The confidence level of t-test is 95%.

Group Compared
Systems

The
Former

The
Latter

Neutral p-value

1
1 vs 2 20.3 35.0 44.7 < 10−4

1 vs 3 18.0 33.7 48.3 < 10−4

2 vs 3 23.3 21.0 55.7 0.492

2
1 vs 6 13.3 35.7 51.0 < 10−6

2 vs 10 13.6 29.7 56.7 < 10−4

3 vs 14 12.3 23.3 64.4 < 10−4

3 10 vs 14 14.7 10.0 75.3 0.083

4

9 vs 10 10.0 19.3 70.7 < 10−2

10 vs 11 12.0 22.0 66.0 < 10−2

13 vs 14 14.7 27.3 58.0 < 10−3

14 vs 15 17.0 30.3 52.7 < 10−3

trained with and without mixture density model respectively. The
DNN-related architectures were 5 hidden-layer, 1024 units per lay-
er, with tanh activation functions. Both the LSTM- and GRU-related
architectures, had two hidden layers; each layer of the LSTM-related
models contained 800 memory blocks with 512 recurrent projection
units while the GRU-related models had 800 units per layer. Lin-
ear and mixture density output layers were used for MSE-trained
and MDN-based networks, respectively. The parameters of all the
NN-based systems were first pre-trained using layerwise backprop-
agation, and then optimized with a mini-batch stochastic gradient
descent (SGD)-based algorithm. For software implementation, the
Kaldi toolkit [23] was used and training was conducted on a Tesla
K40 GPU.

At synthesis time for testing utterances, the speech parameter
generation algorithm3 can generate smooth speech parameter tra-
jectories. The conventional MSE-trained systems used the predict-
ed output features as mean vectors and the global variances pre-
computed from all the training data as covariance matrices, while
the MDN-based systems used the mean and covariance vectors of
the component that had the highest predicted mixing coefficient at
each frame.

3.2. Experimental Results and Analysis

We evaluated all these NN-based systems both objectively and sub-
jectively. 38 utterances not included in the training data were test-
ed. To objectively evaluate the synthesis quality, voiced/unvoiced
error rate, root mean squared error (RMSE) of log F0, LSPs distor-
tion and BAPs error were used. Though these criteria are not highly
correlated to perceived quality, they provide measurable errors be-
tween predicted and target values. When performing objective test,
the phoneme durations of original speech were achieved by forced
alignment using the HMM aligner. The results of objective mea-
sures of different systems are presented in Table 1. The subjective
evaluation was an AB preference test between a pair of synthesized
speech from two chosen systems. 15 native listeners with no hearing
difficulties participated in the evaluation using headphones. Each
subject evaluated 20 pairs and each pair was evaluated by 10 sub-
jects at most. After listening to each pair of synthesized speech, the
subjects were asked to choose a preferred one: 1) the former was

3GV [24] was not considered in this experiment.
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Table 1. Objective results for the MSE-trained and MDN-based systems. Totally 15 systems of different configurations are ingestigated. To
facilitate later use, the systems are numbered, showed in “System ID” column. “n mix” means the mixture density model has n components.
The MDN-based systems share the same architectures as their corresponding MSE-trained systems except the last output layers.

System System
ID

Architecture LSP Distortion
(dB)

BAP Error
(dB)

V/UV Error
Rate (%)

RMSE of
log F0

MSE
DNN 1 5× 1024 1.0355 2.0556 3.861 0.1135

LSTM 2 2× (800 + 512) 1.0302 2.0452 3.691 0.1029
GRU 3 2× 800 1.0319 2.0501 3.658 0.1061

MDN

DNN-MDN

4 2 mix 1.0361 2.0593 3.942 0.1146
5 4 mix 1.0350 2.0556 3.754 0.1119
6 8 mix 1.0339 2.0520 3.666 0.1111
7 16 mix 1.0327 2.0519 3.728 0.1086

LSTM-MDN

8 2 mix 1.0286 2.0478 3.548 0.1031
9 4 mix 1.0263 2.0423 3.721 0.1028

10 8 mix 1.0251 2.0384 3.717 0.1009
11 16 mix 1.0223 2.0390 3.375 0.1007

GRU-MDN

12 2 mix 1.0358 2.0537 3.809 0.1055
13 4 mix 1.0356 2.0551 3.515 0.1091
14 8 mix 1.0299 2.0456 3.518 0.1036
15 16 mix 1.0230 2.0424 3.382 0.1040

preferred; 2) the latter was preferred; 3) neutral (the two utterances
were difficult to distinguish). Table 2 shows the results of subjective
preference tests. When performing subjective evaluations, totally
four groups of comparison were made to comprehensively evaluate
different components of the GRMDN acoustic models.

We first established three conventional MSE-trained systems,
which were respectively DNN-, LSTM- and GRU-based systems
(System 1, 2, 3 showed in Table 1), where the gating units based
recurrent networks acoustic models were evaluated against the DNN
baseline. By comparing the objective results, it can be seen that
both LSTM and GRU help to predict more accurate acoustic fea-
tures (e.g. LSPs) than DNN does4. This can be due to the strong
capacity of gating units in sequence modeling. The same conclu-
sion can be drawn from subjective test results of Group 1 in Table
2. The difference between LSTM and GRU in preference test is not
statistically significant (p value of paired t-test is greater than 0.05),
showing comparable performance between the two kind of gating
units.

Next, the three MSE-trained systems built above were treat-
ed as baselines to assess the performance of MDN-based systems.
Three MDN based models, named as DNN-MDN, LSTM-MDN and
GRU-MDN corresponding to their MSE-trained versions respective-
ly, were established. To demonstrate the superiority of MDN, each
pair of models (e.g. MSE-trained LSTM based and LSTM-MDN
based ones) shared the same architecture except the last output layer.
Objective evaluation results of System 1 and 4 in Table 1 and subjec-
tive preference scores in Table 2 both demonstrate that DNN-MDN
improves naturalness of the synthesized speech, which is consistent
with that reported in [19]. The superiority of mixture density model
is confirmed by comparing LSTM-MDN, GRU-MDN with LSTM
and GRU respectively (Group 2 in Table 2), though the improve-
ments are not such significant as that of DNN-MDN over DNN. We
conjecture that LSTM or GRU can give context-rich outputs through
capturing long-span inputs so the improvements are relatively less
significant. Further, we compared the performance of LSTM-MDN
and GRU-MDN. From Group 3 of subjective evaluations, it can be

4The contrasted result between LSTM and DNN is consistent with that in
[9]

seen that the two kind of GRMDNs (LSTM-MDN and GRU-MDN)
show comparable synthesized naturalness. This suggests a scalable
superiority of LSTM or GRU over DNN whenever there is a mixture
model.

The effect of having different number of mixing components in
the mixture density model was investigated on GRMDNs. It can
be seen from Table 1 that as the number grows, the LSP distortion,
BAP error and RMSE of log F0 all show declining trends in general.
Subjective preference tests of Group 4 in Table 2 also show that hav-
ing more components gives more natural synthesized speech. This
demonstrates that more variability can be generated through increas-
ing the mixing number.

4. CONCLUSIONS

This paper proposes a novel GRMDN architecture to jointly address
the two problems that affecting acoustic accuracy in neural networks
based SPSS: long-span dependencies in linguistic sequences and dis-
tribution hypothesis of acoustic features. Besides, GRU is employed
in RNN-based SPSS for the first time. Among all the investigat-
ed systems, the proposed GRMDN model achieves the best perfor-
mance both subjectively and objectively, demonstrating the superior-
ity over DNN-MDN or the MSE-trained counterpart. Furthermore,
experimental results show that GRU exhibits comparable modeling
capacity with LSTM with simpler architecture. We also explored the
effect of having different number of mixing components in the mix-
ture density model, experimental results suggest that having more
components give more natural synthesized speech.

Our future work includes the application of mixture density
model to bidirectional gating units based recurrent neural networks
for SPSS on a larger dataset.
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[8] Haşim Sak, Andrew Senior, and Françoise Beaufays, “Long
short-term memory based recurrent neural network architec-
tures for large vocabulary speech recognition,” arXiv preprint
arXiv:1402.1128, 2014.

[9] Yuchen Fan, Yao Qian, Fenglong Xie, and Frank K Soong,
“TTS synthesis with bidirectional LSTM based recurrent neu-
ral networks,” in Proc. Interspeech, 2014, pp. 1964–1968.

[10] Heiga Zen and Hasim Sak, “Unidirectional long short-term
memory recurrent neural network with recurrent output lay-
er for low-latency speech synthesis,” in Proc. ICASSP. IEEE,
2015, pp. 4470–4474.

[11] Peilu Wang, Yao Qian, Frank K Soong, Lei He, and Hai Zhao,
“Word embedding for recurrent neural network based TTS syn-
thesis,” in Proc. ICASSP. IEEE, 2015, pp. 4879–4883.

[12] Yajie Miao, Mohammad Gowayyed, and Florian Metze,
“EESEN: End-to-end speech recognition using deep RNN
models and WFST-based decoding,” arXiv preprint arX-
iv:1507.08240, 2015.

[13] Alex Graves and Navdeep Jaitly, “Towards end-to-end speech
recognition with recurrent neural networks,” in Proceedings
of the 31st International Conference on Machine Learning
(ICML-14), 2014, pp. 1764–1772.

[14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio,
“Neural machine translation by jointly learning to align and
translate,” arXiv preprint arXiv:1409.0473, 2014.

[15] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
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