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ABSTRACT

We propose a Kullback-Leibler divergence (KLD) and deep neural
net (DNN) based approach to cross-lingual TTS (CL-TTS) training.
A speaker independent DNN (SI-DNN) ASR is used to equalize the
speaker difference between a source speaker in L1 and a reference s-
peaker in L2. Two speaker dependent GMM-HMM parametric TTS
systems are first trained in the respective languages. The senones
sets of the two TTS are matched in the SI-DNN ASR in terms of
their output posteriors distributions in KLD. The minimum KLD cri-
terion is used to transform the senones in the source speaker’s TTS
(L1) to the corresponding “closest” senones in the target language
(L2). The new CL-TTS thus trained has been shown to achieve high
speaker similarity to the source speaker in L1 while high intelligibil-
ity and naturalness are preserved. For untranscribed source speaker’s
recordings, say, conversational speech, a frame mapping, instead of
“senone mapping” is also proposed to achieve a high but slightly
inferior CL-TTS.

Index Terms— cross-lingual, speech synthesis, Kullback-
Leibler divergence, deep neural networks

1. INTRODUCTION

Cross-lingual TTS synthesis is to synthesize speech in the target lan-
guage (L2) with a specific speaker’s recorded speech in source lan-
guage (L1) and to maintain this speaker’s voice characteristics, i.e.,
timbre. It has many applications, e.g., in speech-to-speech transla-
tion, it is highly preferable that the translated phrase can be synthe-
sized in speech similar to the source speaker’s voice. In 2nd lan-
guage learning, a cross-lingual TTS system with the learner’s own
voice timbre can be useful and motivating to a learner. Several ap-
proaches have been proposed, including: GMM-HMM TTS state
mapping[1] trajectory tiling[2] and spectral space warping[3]. These
3 approaches have achieved reasonably good performance. In [1]
two separate, language-specific decision trees are built with Man-
darin and English speech data recorded by a bilingual reference s-
peaker, and the terminal leaves of the decision tree in L2 are mapped
to the corresponding nearest neighbored terminal leaves of the the
decision tree in L1. A new CL-TTS in L2 can then be built with
the data recorded by the source speaker in L1. However, it’s usu-
ally difficult to find a professional bilingual speaker. In [2], a ref-
erence speaker in the target language (L2) is used to help building
the target language TTS with ”tiles” of the original source speaker’s
monolingual (L1) data. This method can achieve highly intelligible
synthesized speech, the similarity to the original source speaker can
be further improved due to the fact that the speakers’ difference is
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only equalized by a single parameter based bilinear warping func-
tion. In unit selection based speech synthesis, phone mapping can
be used to find suitable units from the speech data of a monolingual
speaker in the source language to synthesize speech in the target lan-
guage. Such a mapping, in general, is based upon a good acoustic-
phonetic similarity measure and mapping between two different lan-
guages at a phonemic level is almost by definition imperfect since
the phonemic spaces of the two languages are not identical [4]. In
[5], speech waveform segments from the speaker’s source language
database are selected when their acoustic cepstrum are similar to the
reference speaker’s segments in the target language. In the past few
years, Deep Neural Networks (DNN) has been successfully applied
to speech recognition[6]. Context-dependent, deep-neural-network
HMMs (CD-DNN-HMMs), apply the classical ANN-HMMs of the
90’s to the traditional tied-state triphones directly, by exploiting the
pre-training procedure[7]. DNN architectures generate composition-
al models, where extra layers can enable composition of features
from lower layers, giving them a huge learning capacity to mod-
el complex patterns of speech data. The long window of frames
in DNN input also can incorporate more temporal information in a
longer context.

In this paper, a speaker independent, deep neural network (SI-
DNN) ASR is trained and the corresponding ASR senones space
i.e., clustered GMM states, are used to represent the whole phonetic
space speaker independently. Speaker differences can then be equal-
ized with the SI-DNN at the senone or frame level in the phonet-
ic space. KLD [15] is used to measure the difference between the
source speaker’s L1 senones and the reference speaker’s L2 senones
after the two speakers’ difference is equalized. Thus the senone map-
ping is established based on a minimum KLD criterion. Finally the
source speaker’s L2 GMM-HMM TTS can be constructed with the
senone mapping result. We also propose frame mapping when the
transcriptions of the source speaker’s L1 speech are not available.

The rest of this paper is organized as follows. In section 2 we
will briefly introduce symmetrised KL Divergence used in this study.
In section 3 the framework of the KLD-DNN approach to CL-TTS
is proposed. In section 4 we describe experiments used to evalu-
ate the performance of the proposed method. Finally we given our
conclusions in section 5.

2. SYMMETRISED KL DIVERGENCE

The Kullback-Leibler divergence [15] (also known as informa-
tion divergence, information gain, relative entropy, etc.) is a
non-symmetric measure of the difference between two probabili-
ty distributions, P and Q, which can be measured in a discrete or
a continuous density form. For discrete probability distributions P
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and Q, the KL divergence of Q from P is defined as,

DKL(P ||Q) =
∑
i

P (i) ln
P (i)

Q(i) (1)

For distributions P and Q of continuous random variables, the
KL divergence is defined as an integral,

DKL(P ||Q) =

∫ ∞
−∞

p(x) ln
p(x)

q(x)
dx (2)

where p and q denote the probability densities of P and Q.
In this study we use a symmetrised discrete form of KLD defined

as ,

DKL(P,Q) =DKL(P ||Q) +DKL(Q||P )

=
∑
i

(P (i)−Q(i))(ln(P (i))− ln(Q(i))) (3)

It’s positive semi-definite (i.e., >0), and we use it to measure the dis-
tortion between two given discrete distributions which are computed
as the DNN output posterior probabilities.

3. KL DIVERGENCE AND DNN APPROACH TO
CROSS-LINGUAL TTS SYNTHESIS

In statistical parametric speech synthesis, we construct a decision
tree by clustering context-dependent, hidden Markov model (HM-
M) states to represent the probability densities of speech parameters
of a given “senone”(context-dependent clustered state). In this sec-
tion we use a speaker independent DNN to equalize the difference
between the source speaker and the reference speaker in different
languages. The SI-DNN trained in L1 data can find a proper pos-
terior distribution for each TTS (L2) senone in a cross-lingual sce-
nario, under the assumption that different spoken languages share
the same acoustic-phonetic space at the senone, i.e., a sub-phonemic
level. Since the output posterior distribution of SI-DNN is speaker
independent, we can use KLD to measure the phonetic distortions
between L1 and L2 in the probability space. The TTS (L1) senones
of the source speaker can then be mapped to the closet senone in the
reference speaker’s TTS (L2) to create a cross-lingual TTS for the
source speaker in L2.

3.1. Senone Mapping

A block diagram of senone mapping in KLD-DNN based CL-TTS
training is shown in Fig. 1.

In training, both source speaker’s L1 speech and reference s-
peaker’s L2 speech are collected. The two speech corpora are first
used to train two GMM-HMM based TTS systems in the correspond-
ing languages, respectively. Given the senone-level forced align-
ments of L1 training speech, we can get I buckets of training data,
where I is the number of TTS (L1) senones. Then we process each
bucket of source speaker’s training data in L1 via the SI-DNN to get
the accumulated posteriors for all N English ASR senones. The ac-
cumulated posteriors are then averaged by the number of accumulat-
ed frames in each bucket. For each TTS senone in L1 sL1

i , we obtain
the ASR senone posterior distribution Pi. In the same way, we ob-
tain ASR senone posterior distribution Qj for each TTS senone in
L2 sL2

j .

Pi = [ p(sASR
1 |sL1

i ) p(sASR
2 |sL1

i ) ... p(sASR
N |sL1

i ) ],

i ∈ [1, 2, ..., I]
(4)
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Fig. 1. KLD-DNN Cross-Lingual TTS: senone mapping

Qj = [ q(sASR
1 |sL2

j ) q(sASR
2 |sL2

j ) ... q(sASR
N |sL2

j ) ],

j ∈ [1, 2, ..., J ]
(5)

We use KLD to measure phonetic distortion between each TTS
(L1) senone sL1

i distribution Pi and each TTS (L2) senone sL2
j dis-

tribution Qj in the probability space. A senone mapping is estab-
lished with the minimum KLD selection criterion. For each TTS
(L2) senone sL1

i of the reference speaker, we find a corresponding
TTS (L1) senone sL2

Map(i)of the source speaker in the minimum KLD
sense.

Map(i) = argmin
j

DKL(Pi, Qj)

= argmin
j

N∑
n=1

(p(sASR
n |sL1

i )− p(sASR
n |sL2

j ))∗

(ln(p(sASR
n |sL1

i ))− ln(p(sASR
n |sL2

j ))),

i ∈ [1, 2, ..., I], j ∈ [1, 2, ..., J ]

(6)

Finally the source speaker’s L2 TTS can be constructed with
his own L1 TTS senones after the minimum KLD matching. In
our HMM-based speech synthesis, spectrum, pitch and duration fea-
tures are separated into three streams and three separate stream-
dependent decision trees are built to cluster context-dependent states.
The senone mapping is only established for spectrum matching.

3.2. Frame Mapping

In certain scenarios, L1 speech of the source speaker may be collect-
ed conversationally without any prescribed text. To deal with such
a situation, we propose a frame mapping based KLD-DNN derived
CL-TTS as shown in Fig. 2. For each L2 TTS senone sL2

j we can
find an ASR senone posterior distribution Qj as in Eq. (5).

Given the source speaker’s utterances in L1 without transcrip-
tions, we can similarly get a posterior distribution Pk across all the
ASR N senones in the SI-DNN for the k-th frame xk.

Pk = [ p(sASR
1 |xk) p(sASR

2 |xk) ... p(sASR
N |xk) ]

k ∈ [1, 2, ...,K]
(7)

We can then measure the phonetic distortion between the posterior
distribution Pk of each source speaker’s L1 speech frame, xk, and
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Fig. 2. KLD-DNN Cross-Lingual TTS: frame mapping

the posterior distribution Qj of each TTS (L2) senone sL2
j . For the

k-th frame xk, we obtain J such KLDs to J different TTS (L2)
senones. They can be used as a weight for each TTS (L2) senone
as in Eq.(9). The acoustic mean µj and variance σ2

j of each TTS
(L2) senone sL2

j for the source speaker can then be computed in a
weighted average as

DKL(xk, s
L2
j ) =

N∑
n=1

(p(sASR
n |xk)− p(sASR

n |sL2
j ))∗

(ln(p(sASR
n |xk))− ln(p(sASR

n |sL2
j )))

(8)

w(sL2
j |xk) =

e−DKL(xk,s
L2
j )∑J

j=1 e
−DKL(xk,s

L2
j )

(9)

Aj =

K∑
k=1

w(sL2
j |xk) (10)

µj =
1

Aj

K∑
k=1

w(sL2
j |xk)xk (11)

σ2
j =

1

Aj

K∑
k=1

w(sL2
j |xk)(xk − µj)

2 (12)

where K is the accumulated number of fractional frames.

3.3. Prosody Transformation

In this study we concentrate on preserving the timbre, i.e., speaker’s
voice characteristics in the spectral domain. However, the prosody
of the source speaker is still transformed but only in a global scale
between the reference speaker (L2) and the source speaker (L1). In
synthesis , we generate the reference speaker’s pitch trajectory first,
and then a Gaussian normalized transformation[11] is used to trans-
form the F0 of the reference speaker (L2) to the F0 of the source
speaker (L1) as follows:

ln(F0Trans) = µL1 +
σL1

σL2
(ln(F0L2)− µL2) (13)

where µ and σ are the means and standard deviations of the two
speakers in the corresponding languages.

The source speaker’s L2 TTS duration model is directly copied
from the reference speaker.

4. EXPERIMENTS

We evaluate the intelligibility, naturalness and similarity of the
speech synthesized by our KLD-DNN based, cross-lingual TTS
system. English and Mandarin belong to two different language
families and they have many significant differences which makes
English-Mandarin cross-lingual TTS synthesis more challenging.
In this study, we take English as L1 and Mandarin as L2. A male,
bilingual speaker with a mother tongue of Taiwanese Mandarin and
a learned second language English is used as the source speaker.
Only his English speech is used to synthesize his Mandarin speech.
His Mandarin TTS trained with his Mandarin speech is used as a
benchmark of the upper bound performance of our cross-lingual
TTS experiments. A native male Mandarin speaker M is adopted as
the reference speaker.

4.1. Experimental Setup

A database of 1,000 Mandarin utterances (∼ 1 hour) of a reference
native male speaker is used for training a speaker dependent, Man-
darin GMM-HMM based TTS. Speech is sampled at 16kHz, win-
dowed by a 25ms windows, and shifted every 5ms. 40th-order Line
Spectral Pair (LSP) coefficients [9] plus gain and corresponding first
and second order dynamic features, the fundamental frequency(F0)
in log scale and its first and second order dynamic features are ex-
tracted. Multi-space probability Distribution (MSD) HMMs of 5-
states, left to right, no-skip topology with diagonal covariance ma-
trix are constructed. Conventional MDL-based decision tree is ap-
plied to do model clustering[10]. The penalty scaling factor α is set
to 1. The number of spectral senones, or the number of terminal
leaves of the spectral decision tree is 1,755. A database of 1,000
English utterances (∼ 1 hour) uttered by the source speaker is also
used for training the English GMM-HMM based TTS. The number
of spectrum senones is 1,818.

Wall Street Journal CSR corpus is used to train CD-DNN-HMM
acoustic model. Training set (SI-284) contains 78 hours utterances
recorded by 284 native American English speakers. A context de-
pendent GMM-HMM models (CD-GMM-HMM) are first trained in
the ML sense with subset of the training data (SI-84) which con-
tains 15 hours utterances of 84 speakers. The acoustic features, ex-
tracted by a 25ms hamming window, shifted every 10ms, consist
of 38 MFCCs plus log energy. Three states, left-to-right HMM tri-
phone models, each state with 16 Gaussians components, diagonal
covariance distribution, are trained. The phone set is constructed by
grouping TIMIT phonemes into 40 phonemes. The total number of
”senones” after state-tying is 2,754.

Acoustic models are then enhanced by DNN training with all
training data (SI-284)[13]. Our DNN model (CD-DNN-HMM) is a
6 layer network, consisting of 1 input layer, 4 hidden layers, each
layer with 2K units, and 1 output layer, with the same number of
senones output as in CD-GMM-HMM. The input of DNN is MFCC-
s, which contains 5 left frames, the current frame and 5 right frames
(429 dimensions). Each dimension is normalized to zero mean and
unit variance. Our DNN is initialized with the Deep Belief Network
(DBN) pre-training procedure [12]. All weights and bias are then
discriminatively tuned using about 100 epochs in the BP phase.And
the learning rates and size of mini-batch are also set for each RB-
M and in each training phase. The state transition parameters are
obtained from original CD-GMM-HMM training.
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4.2. Experimental Results and Analysis

Four systems have been built for evaluating the cross-lingual TTS
performance of our proposed KLD-DNN approach. They are two
KLD-DNN based systems, including: System I constructed with
senone mapping and System II constructed with frame mapping
and two reference systems, including: System III, our earlier “tra-
jectory tiling” based TTS [2] where a manually set bilinear spectral
warping was used to equalize the speaker difference between the
source and reference speakers; System IV, baseline GMM-HMM
parametric TTS trained on 1,000 recorded Mandarin sentences of the
bi-lingual source speaker; this system is used as the upper bound of
the CL-TTS performance since it is built directly with the recorded
sentences in the target language, i.e., Mandarin, but it is not realistic
in practice.

4.2.1. Objective Test

The log-spectral distortion between the synthesized L2 speech and
the source speaker’s L2 natural recordings are shown in Table1. Our
proposed methods, both System I which is based on senone map-
ping and System II which is based on frame mapping, outperform
the “trajectory tiling” approach significantly in terms of LSD.

Table 1. LSD(dB) on test set

I II III IV
LSD(dB) 4.68 4.50 5.39 3.91

4.2.2. Intelligibility Test

An informal intelligibility test was conducted to evaluate the the
four systems. It is informal because it was not subjectively test-
ed with semantically unmeaningful sentences (SUS). However, the
sentences used in the test are not that common like everyday greet-
ing sentences. In other words, significant effort is still needed by
the subjects to transcribe the testing utterances phonetically correct.
Five native Mandarin speakers with normal hearing were asked to
transcribe 20 testing sentences randomly chosen from a set of 100
synthesized sentences. And the intelligibility test result is shown
in Table 2. According to the table, all four systems, based upon
the GMM-HMM parametric TTS framework, which is well known
for its intrinsic high intelligibility, performed well in the intelligi-
bility test. The difference between any two systems is statistically
insignificant.

Table 2. Intelligibility score(%) for 20 synthesized sentences

I II III IV
Intelligibility 98.1 97.9 98.2 98.7

4.2.3. Naturalness and Speaker Similarity Subjective Test

A total of 10 native Mandarin speakers with normal hearing partici-
pated in the naturalness and speaker similarity preference test. In the
naturalness test they were asked to judge 20 synthesized sentences
in a five-point scale MOS[14]: 5-excellent, 4-good, 3-fair, 2-poor, 1-
bad. While in the similarity test, they were asked to give subjective
opinions in terms of a five-point scale DMOS and the synthesized
sentences were given side-by-side with the corresponding original
recordings of the source speaker. The 5-point DMOS scores are: 5-
very similar, 4-quite similar, 3-similar, 2-different, 1-very different.

0 1 2 3 4 5

System III

System II

System I

System IV

N_R

DMOS

0 1 2 3 4 5

System III

System II

System I

System IV

N_R

MOS

Fig. 3. Naturalness (MOS) and similarity (DMOS) scores, N R is
source speaker’s Mandarin natural recordings

As indicated by the results depicted in Fig.3, System I based
upon senone mapping performs much better than best System III
previously proposed by us with a DMOS advantage of 0.6 in speak-
er similarity, or 3.5 vs 2.9. In MOS scores, System I achieves
a slightly better rating than System III, i.e., 3.5 vs 3.4. MOS
naturalness scores and DMOS speaker similarity scores also indi-
cate System I is approaching the unreachable upper bound perfor-
mance of the reference System IV, which is trained directly with
the recorded sentences in Mandarin, while System I is trained via
a cross-lingual training. The MOS difference is 3.5 vs 3.6 while the
DMOS difference is 3.5 vs 3.8. This is very satisfactory since as far
as we know, no CL-TTS has ever reached such a high speaker sim-
ilarity performance while still keeping a very decent MOS natural-
ness socre and good intelligibility. Without using the transcription,
System II, based upon the same KLD-DNN approach but with
a statistically soft “frame mapping”, achieves MOS score of 3.3 in
naturalness and DMOS scores of 3.1 in speaker similarity. Given the
fact that no transcriptions are required for proper segmentation of
the training data into appropriate “senone” chunks plus other prob-
ability to improve the overall system performance, System II has
a high potential for CL-TTS training of personalized voice. Overall,
the good performance of both System I and System II really
demonstrate the power of speaker independent neural net for equal-
izing the speaker and language differences, the two most challeng-
ing issues in CL-TTS training, and the KLD’s power in “aligning”
speech units phonetically down to the sub-phonemic senone or frame
level. Some samples of the synthesized utterances are give on the
web link: http://feng-long.github.io/CL-TTS.

5. CONCLUSIONS

In this study, we propose to use SI-DNN to equalize the speaker dif-
ference in different languages and KLD to measure the phonetic dis-
tortion between two given acoustic segments at senone or frame level
probabilistically for training high performance TTS cross-lingually
with good intelligibility, naturalness and high speaker similarity. The
senone mapping based CL-TTS thus trained has been shown the ef-
fectiveness of the proposed approach. The MOS of naturalness has
achieved 3.5 and DMOS of speaker similarity has also achieved 3.5
by the senone mapping based CL-TTS; those two scores are ap-
proaching the corresponding scores of MOS and DMOS (3.6 and
3.8) achieved by the TTS directly trained by the recorded sentences
in the target language of the same source speaker.
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