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ABSTRACT

The speech synthesized by statistical parametric speech synthesis
(SPSS) always sounds muffled. One important reason is that the
generated spectral envelopes are over-smoothed and many detailed
spectral structures in natural speech are lost. This paper presents a
deep belief network (DBN)-based post-filtering method for hidden
Markov model (HMM)-based SPSS to address this issue. At train-
ing time, a DBN is estimated using the spectral envelopes extracted
from natural speech. This DBN serves as a generatively trained post-
filter which processes the spectral envelopes recovered from the pre-
dicted spectral features at synthesis time. Experimental results show
that the effectiveness of this method depends on the sampling strat-
egy used to generate the training data of the restricted Boltzmann
machines (RBM) which forms the higher layers of the DBN. When
binary samples are adopted instead of mean-filed approximation, the
DBN post-filter can alleviate the over-smoothing effect of parameter
generation and improve the naturalness of synthetic speech signifi-
cantly when either mel-cepstra or line spectral pairs (LSP) are used
as spectral features. Its performance is comparative with the param-
eter generation method with global variance (GV) modeling for mel-
cepstra and better than the LSP-based formant enhancement method
used in previous work.

Index Terms— speech synthesis, hidden Markov model, post-
filter, deep belief network, restricted Boltzmann machine

1. INTRODUCTION

Hidden Markov model (HMM) based statistical parametric speech
synthesis (SPSS) [1] is one of the most popular methods for speech
synthesis nowadays. This method is able to synthesize highly intel-
ligible and smooth speech, and has various advantages such as com-
pact footprint and the flexibility to control the characteristics of syn-
thetic speech. However, this method has a tendency to over-smooth
the spectral envelopes of synthetic speech because of the statisti-
cal averaging effect during HMM training and parameter generation,
which makes the speech sound muffled [2].

The over-smoothing effect can be alleviated by using better
acoustical models or better training criteria such as trajectory HMMs
[3], deep neural networks (DNN) [4] and minimum generation error
training [5]. Another other way is to compensate over-smoothing
by post-filtering at synthesis time. The parameter generation al-
gorithm considering global variance (GV) [6] is an effective one
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for mel-cepstral sequences. When line spectral pairs (LSPs) are
used as spectral features, a method to enhance the formant structure
by modifying the spaces between adjacent LSP orders has shown
its effectiveness [7]. Recently, a deep learning based post-filtering
method has been proposed [8]. In this method, a deep neural net-
work (DNN) is generatively trained by concatenating two deep
believe networks (DBN) and a bidirectional associative memory
(BAM) to map the spectral envelopes of synthetic speech towards
natural ones. One deficiency of this method is that the parameters of
the post-filter depends on the parameter generation process, which
means that the DNN needs to be re-trained if different spectral
features or parameter generation algorithms are adopted.

This paper proposes to utilize a DBN as a post-filter to com-
pensate the over-smoothing effect of HMM-based speech synthesis.
At training time, the spectral envelopes derived from natural speech
by STRAIGHT [9] are used to estimate a DBN, which is learnt in
a layer-by-layer manner using a stack of RBMs [10]. Binary sam-
ples are used instead of mean-filed approximation to train the RBMs
above the first layer, which aims at finding discrete patterns within
training samples and proves to be essential in our experiments. At
synthesis time, the DBN post-filter works like an auto-encoder [11],
which first extracts high-level hidden representations from the spec-
tral envelopes generated by HMMs and then recover the spectral en-
velopes through a top-down process [12]. These modified spectral
envelopes are sent into a vocoder to reconstruct final speech wave-
forms. Because only the spectral envelopes of natural recordings are
involved in training data, the DBN post-filter can work for the sys-
tems using different spectral features derived by STRAIGHT, such
as mel-cepstra and LSPs.

The rest of this paper is organized as follows. In Section 2, we
will introduce our proposed post-filtering method after a brief re-
view of DBNs and its building blocks RBMs. Section 3 presents the
experimental results and discussion. Section 4 gives the conclusion.

2. METHODS

2.1. RBMs and DBNs

An RBM is an undirected bipartite graphical model with one layer of
stochastic visible units connected to one layer of stochastic hidden
units [13]. The hidden layer units of RBM is binary, while the visible
layer could be either binary or Gaussian. The graphical representa-
tion of an RBM is shown in Fig.1(a). An RBM can be considered
as a density model which describes the distribution of visible units.
Given training samples of visible units, the model parameters of an
RBM can be estimated under maximum likelihood criterion using
contrastive divergence (CD) algorithm [14].
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(a) RBM (b) DBN

Fig. 1. The graphical model representations of an RBM and a DBN
with three hidden layers. Gray circles denote visible units and white
circles denote hidden units.

A DBN is a probabilistic generative model that contains many
layers of hidden units [10]. The top two layers form an undirected
bipartite graph with the lower layers forming a directed sigmoid be-
lief network. Fig.1(b) shows the graphical representation of a DBN
with three hidden layers.

Considering a DBN with Gaussian visible units and binary hid-
den units of K layers, the conditional distribution between two ad-
jacent layers along top-down direction can be derived as

P (hk−1
i = 1|hk) = g(ak

i +
∑
j

wk
ijh

k
j ), (1)

where k ∈ {2, 3, ...,K}, W k = {wk
ij} and ak = {ak

i } are the
weight matrix and visible bias vector at the k-th layer, and g(x) =
1/(1 + exp(−x)) is the sigmoid function. At the bottom layer, we
have

P (v | h1) = N (v;W 1h1 + a1,Σ), (2)

whereN (·) denotes a Gaussian distribution, and the covariance ma-
trix Σ is commonly simplified to an identity matrix.

It is difficult to train a DBN directly under maximum likelihood
criterion due to its complex model structure. A fast, unsupervised
learning algorithm for training DBNs was proposed by training a
stack of RBMs in a layer-by-layer manner [10]. Given training sam-
ples of visible units, the model parameters {W 1,a1, b1} of the bot-
tom RBM are first learnt, where W 1 and a1 are freezed as the pa-
rameters of the DBN. After the RBM at the (k−1)-th layer is learnt,
the parameters of the RBM at the k-th layer can estimated using the
samples drawn from

P (hk
j = 1|hk−1) = g(bkj +

∑
i

wk
ijh

k−1
i ), (3)

where k ∈ {1, 2, ...,K}, and h0 = v. Mean-field approximation
is commonly used in practical implementation [15] to draw samples
following (3), which means that the j-th dimension of the sampled
vector is calculated as

ĥk
j = E

[
hk
j |hk−1

]
= P (hk

j = 1|hk−1). (4)

This sample generation and RBM training process is conducted it-
eratively until it reaches the top layer. Then, all parameters of the
DBN can be estimated.

2.2. DBN-based post-filtering

A DBN is a generative model, which generates visible units along
top-down direction. The conditional distribution P (v | hK) can

Fig. 2. Flowchart of our proposed DBN post-filtering method.
The modules in solid lines represent the procedures of conventional
HMM-based speech synthesis. The modules in dash lines describe
the add-on procedures of our proposed method.

be calculated by cascading (1) and (2). When a DBN is estimated
by a stack of RBMs, it can also extract hidden representations from
visible units in a bottom-up way following (3). In previous work
[8], DBNs have been adopted to achieve the transformation between
spectral envelopes and hidden representations in a DNN-based post-
filter for SPSS. In this paper, we investigate the method of applying
a DBN alone as a post-filter to alleviate the over-smoothing effect of
generated spectral features.

The flowchart of our proposed method is shown in Fig.2.
STRAIGHT [9] is adopted as the vocoder for acoustic feature
extraction and waveform reconstruction in our method. At the train-
ing stage, context-dependent HMMs are estimated following the
conventional approach which uses mel-ceptrum or LSP as spectral
feature. In the meantime, the raw spectral envelopes derived from
the training corpus are used to estimate a global DBN model fol-
lowing the method introduced in Section 2.1. In this paper, binary
samples of hidden units instead of the posterior probabilities in (4)
are used to train the RBMs above the bottom layer. The samples are
generated following maximum output probability criterion, i.e.,

ĥk
j = argmax

hk
j

P (hk
j |hk−1). (5)

The motivation of adopting this sampling strategy is that the esti-
mated DBN is expected to act as a post-filter for the generated spec-
tral features in this paper. Therefore, its aim is not to perfectly re-
cover input features but to modify them according to the latent pat-
terns of spectral vectors in the training set. Using binary samples
may help to cluster similar vectors at lower layers for extracting rep-
resentative patterns at higher layers.

At synthesis time, acoustic feature sequences are predicted from
the estimated HMMs using conventional parameter generation al-
gorithm [16]. The generated spectral features, i.e., mel-cesptra or
LSPs, are first converted to spectral envelopes according to their def-
inition. Then the spectral envelopes are sent into the trained DBN
for post-filtering. Given a frame of generated spectral envelope, hid-
den representations are derived in a bottom-up way by applying (3)
layer-by-layer. After reaching the top layer, the topmost hidden rep-
resentations are used to reconstruct the visible feature in a top-down
way by using (1) and (2). Because the post-filtering is conducted
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Table 1. The systems using mel-cepstra.
System Descriptions
HMM the HMM-based baseline system using 41-

dimensional mel-cepstra as spectral features
HMM-GV the system using parameter generation with

GV modeling [6]
DBN-B the system using DBN-based post-filter,

which is trained with spectral envelopes and
binary samples at hidden layers

DBN-M the system using DBN-based post-filter,
which is trained with spectral envelopes and
mean-field approximation at hidden layers

DBN-MCEP the system using DBN-based post-filter,
which is trained with mel-cepstra and binary
samples at hidden layers

frame-by-frame without further temporal smoothing, mean-field ap-
proximation at hidden layers is used during bottom-up and top-down
mapping in order to avoid the discontinuity introduced by binariza-
tion. Finally, the post-filtered spectral envelopes are used to synthe-
size speech waveforms by STRAIGHT.

3. EXPERIMENTS

3.1. Experimental setup

The database of female US English speaker SLT in CMU ARCTIC
databases (http://festvox.org/cmu_arctic/) was used
in our experiments. The waveforms were recorded in 16kHz/16bit
format. One thousand of the 1,132 utterances in the database were
used for system training. The remaining 132 utterances were used
for testing.

When constructing the baseline HMM-based speech synthesis
system, 41-dimensional mel-cepstra (including a power dimension)
or 41-dimensional LSPs (including a gain dimension) were derived
from the spectral envelopes analyzed by STRAIGHT at 5ms frame
shift. The F0 and spectral features consisted of static, velocity, and
acceleration components. A 5-state left-to-right HMM structure with
no skips was adopted to train the context-dependent phone models.
The covariance matrix of the single Gaussian distribution at each
HMM state was set to be diagonal.

The dimension of extracted spectral envelopes was 513 due to
the FFT length of 1024 in STRAIGHT analysis. The spectral ampli-
tudes at each frequency point were logarithmized. For DBN train-
ing, silence frames were removed to reduce computational cost and
each dimension of training samples were normalized to zero mean
and unit variance. The DBN was set to have three hidden layers
and 1024 units per layer according to some preliminary and infor-
mal listening tests. The learning rate for RBM training was 0.0001.
The batch size was set to 20 and 200 epochs were executed for esti-
mating each RBM when building the DBN. CD learning with 1-step
sampling (CD-1) was adopted for RBM training.

For comparison, we built another two DBNs using the mel-
cepstral and LSP vectors of training data respectively. These DBNs
were used as post-filters to process the generated mel-cepstra or
LSPs directly. Their performance was compared with the DBN
post-filter on spectral envelopes in our experiments. These two
DBNs contained both three hidden layers and 82 hidden units per
layer. The number of hidden units was chosen according to the
proportion between the number of hidden and visible units in the

Table 2. The systems using LSPs.
System Descriptions
HMM the HMM-based baseline system using 41-

dimensional LSPs as spectral features
HMM-FE the system using LSP-based formant enhance-

ment [7] for post-filtering
DBN-B the system using DBN-based post-filter,

which is trained with spectral envelopes and
binary samples at hidden layers

DBN-M the system using DBN-based post-filter,
which is trained with spectral envelopes and
mean-field approximation at hidden layers

DBN-LSP the system using DBN-based post-filter,
which is trained with LSPs and binary sam-
ples at hidden layers

DBN for spectral envelopes.

3.2. Results and discussion

Two groups of systems using mel-cepstra or LSPs as spectral fea-
tures for HMM modeling were evaluated in our experiments. De-
tails of the evaluated systems are shown in Table 1 and 2. Two
MUSHRA (MUltiple Stimuli with Hidden Reference and Anchor)
tests [17] were conducted to compare the naturalness scores of the
systems in each group. Natural recordings were adopted as reference
stimuli in each test. Ten sentences were randomly selected from the
test set and were synthesized by all the systems listed in Table 1 and
2.1 In each test, the utterances synthesized by five systems were eval-
uated by twenty English native listeners on the crowdsourcing plat-
form of Amazon Mechanical Turk (http://www.mturk.com)
with anti-cheating considerations [18]. The listeners were asked to
give each utterance a score ranging from 0 to 100 by comparing the
same sentence synthesized using other systems. The average natu-
ralness scores and standard errors of all systems are shown in Fig. 3
and Fig. 4.

From the evaluation results, we can see that the GV-based
parameter generation method for mel-cepstra and the LSP-based
formant enhancement method improve the naturalness of synthetic
speech a lot. DBN-M performs similar to HMM in both tables.
Paired t-test shows that there is no significant difference between
these two systems. The reason is that mean-field approximation was
adopted by both DBN training and post-filtering in DBN-M. Thus,
the DBN worked similar to an auto-encoder [11] considering that
the RBMs were estimated by CD-1 algorithm.

In contrast, DBN-B performs better than HMM in both groups.
This means that the same DBN post-filter can improve the natural-
ness of synthetic speech when either mel-cesptra or LSPs are used
as spectral features. Comparing DBN-B with DBN-M, we can see
the effectiveness of generating binary samples using (5) for training
a DBN post-filter. Such binarization could be considered as a proce-
dure of discretizing the generated hidden units and clustering their
similar patterns. Patterns with high probabilities are emphasized,
while patterns with low probabilities are suppressed. Therefore, the
built DBN could be more sensitive to the principle patterns in natural
spectral envelopes. The DBN-based post-filtering could be consid-
ered as a process which finds the latent spectral representations of

1Demos of synthetic speech can be found at http://home.ustc.
edu.cn/˜hyj15475/DBNPost-Filtering/demo.html.
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Fig. 3. Naturalness scores of systems using mel-cepstra.
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Fig. 4. Naturalness scores of systems using LSPs.

generated spectral envelopes and then recovers them using the prin-
ciple patterns extracted from natural spectral envelopes.

Paired t-tests show that there is no significant difference between
DBN-B and HMM-GV in Fig. 3. The average GV vectors of the
mel-cepstra generated by the HMM, HMM-GV, and DBN-B systems
on test set were compared with natural ones and are shown in Fig.
5. We can see that our proposed DBN-based post-filtering method
can compensate the gap between the GVs of generated mel-cepstra
and natural ones effectively even if GV parameters are not explicitly
utilized by this method.

In Fig. 4, DBN-B achieves higher naturalness score than HMM-
FE. Paired t-tests show that the difference between these two sys-
tems is significant at the significance level of 0.05. Fig.6 shows one
frame of spectral envelopes generated by four systems using LSPs.
We can see that both HMM-FE and DBN-B systems can increase the
sharpness of formants effectively and the effect of DBN post-filter is
more significant. This is consistent with the results of listening test
shown in Fig. 4.

Finally, we can see that the DBN-MCEP and DBN-LSP systems
perform worse than baseline systems. One possible reason is that the
method of training DBNs using binary hidden samples may be inap-
propriate for the low-dimensional spectral features extracted from
spectral envelopes, such as mel-cepstra and LSPs. As discussed in
[8], the hidden units extracted from mel-cepstra using an RBM may
not distribute in a fairly binary way. Therefore, using binary samples
may introduce large distortions to the hidden representations.
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Fig. 5. Average GVs on test set of different systems in Table 1.
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Fig. 6. Spectral envelopes generated by different systems in Table 2.

4. CONCLUSION

This paper presents a DBN-based post-filtering method to alleviat-
ing the over-smoothing effect of conventional HMM-based speech
synthesis. The DBN is trained using the spectral envelopes of natu-
ral speech. A strategy of generating binary samples at hidden layers
for DBN training is adopted to boost the performance of the DBN
as a post-filter. At synthesis time, the spectral features predicted by
HMMs are converted to spectral envelopes and then processed by
the DBN through a bottom-up and top-down mapping process. Sub-
jective results show that the built DBN post-filter can improve the
naturalness of synthetic speech effectively when either mel-cepstra
or LSPs are used as spectral features. It achieves equivalent perfor-
mance to GV-based parameter generation for mel-cepstra, and out-
performs the formant enhancement method for LSPs. Future work
will focus on utilizing DBN as a feature extractor to improve the per-
formance of HMM-based and DNN-based parametric speech syn-
thesis.
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