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ABSTRACT

This paper describes a novel GMM-UBM based system that
deals with the session noise variability problem. The sys-
tem uses the Type-2 Fuzzy GMM framework by considering
the speaker GMM parameters to be uncertain in an interval.
The parameters intervals are estimated using a multicondi-
tion model training on noisy speeches that are synthesized
from the speaker’s utterances. Experiments were conducted
using the MIT Device Speaker Verification Corpus with ut-
terances having the lowest noise level as training data. The
result shows an improvement in the EER of 24.11% for the
proposed method compared to the GMM-UBM when evalu-
ated over the noisiest utterances. This shows that the method
reduces the effects of the session variability.

Index Terms— Text-independent speaker verification,
session variability, type-2 fuzzy GMM, multicondition model
training.

1. INTRODUCTION

The Gaussian Mixture Model-Universal Background Model
(GMM-UBM) [1] is a framework for text-independent speaker
verification applications [2–4]. The GMM capability of mod-
eling the different phonetic variations from the speaker’s
utterances associated with its insensitivity to temporal as-
pects demonstrates the effectiveness of the method [4]. The
i-vector approach, which is considered the state-of-the-art, is
also influenced by the GMM-UBM model [5]. This approach
is based on the extraction of statistics of a UBM with a big
number of Gaussian components.

In real applications, GMM-UBM has to model training
and testing utterances recorded in different sessions with dif-
ferent background noise. This mismatched environmental
condition is known as session variability [6] and it leads to
intra-speaker variability. We argue that the GMM parameters
are corrupted since noise is present in a speech signal. Here,
we propose a text-independent speaker verification system
that handles GMMs with uncertain parameters.
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Zeng et al. [7] introduced the Type-2 Fuzzy GMM (T2F-
GMM) framework to describe the GMMs uncertain parame-
ters and provides intervals for the likelihood of an observa-
tion. We applied the T2F-GMM model in the speaker ver-
ification problem and obtained better results than the tradi-
tional GMM-UBM [8–10]. In [8] and [9], we assumed a
fixed uncertainty to train the models and in [10], the uncer-
tainty of the GMM parameters was estimated using different
noisy speeches. Therefore, it was necessary to collect training
utterances from different environments. These models, how-
ever, are not considered robust to the session noise variability.
Here, we applied the multicondition model training approach
[11] that allows the estimation of the uncertainty with no prior
knowledge on the conditions of the environment.

In the remainder of this paper, we describe the T2F-GMM
in Section 2. In Section 3, the proposed method is introduced.
Section 4 presents the experiments and the comparative re-
sults. Finally, conclusions are presented in Section 5.

2. TYPE-2 FUZZY GMM FRAMEWORK

The GMM likelihood of aD-dimensional observation x, con-
sidering M mixtures, is defined as:

p(x|λ) =

M∑
i=1

ωiN(x;µi,Σi) (1)

in which N(x;µi,Σi) is the multivariate Gaussian. The pa-
rameter ωi is defined as the mixture weight, having the fol-
lowing property

∑M
i=1 ωi = 1. The parameters µi and Σi are

the D-dimensional mean vector and D ×D-dimensional co-
variance matrix, respectively. The model λ = {ωi,µi,Σi},
for i = 1, 2, . . . ,M is estimated from the training data by the
Expectation-Maximization (EM) algorithm [12].

The likelihood p(x|λ) may be corrupted as the µ and Σ
parameters may have uncertain values due to noise or insuffi-
cient data. Zeng et al. [7] proposed the Type-2 Fuzzy GMM
(T2F-GMM) framework to handle GMMs with uncertain pa-
rameters by using the theory of Type-2 Fuzzy Sets [13]. The
framework assumes that the values µ and σ for each compo-
nent of µ and Σ, respectively, are uniformly distributed in the
intervals [µ, µ] and [σ, σ] whose boundaries are defined as:
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µ = µ− kmσ, µ = µ+ kmσ; (2)

σ = kvσ, σ =
σ

kv
. (3)

The uncertainty parameters are km ∈ [0, 3] and kv ∈ [0.3, 1],
since the one-dimensional Gaussian has 99.7% of its proba-
bility concentrated in the range [µ− 3σ, µ+ 3σ].

The uncertain normal density function is defined consid-
ering the uncertain mean vector µ̃ and the uncertain covari-
ance matrix Σ̃:

N(x; µ̃,Σ) =
1√

(2π)D|Σ|

D∏
i=1

e

[
− (xi−µi)

2

2σ2
i

]
, µi ∈ [µi, µi];

(4)

N(x;µ, Σ̃) =
1√

(2π)D|Σ|

D∏
i=1

e

[
− (xi−µi)

2

2σ2
i

]
, σi ∈ [σi, σi].

(5)
Note that the diagonal covariance matrix Σ = diag(σ2

1 , . . . , σ
2
D)

is used in Eqs. (4) and (5).
Each uncertain exponential factor in Eqs. (4) and (5) is

the primary Member Function (MF) of the Gaussian with un-
certain mean or standard deviation, and is denoted as:

f(x;µ, σ) = e[−
1
2 ( x−µσ )]. (6)

Type-2 fuzziness is defined as the MF of a primary MF that is
called second MF. The upper second MF with uncertain mean
is defined as:

h(x) =


f(x;µ, σ), x < µ,

1, µ ≤ x ≤ µ,
f(x;µ, σ), x > µ.

(7)

and the lower second MF is:

h(x) =

{
f(x;µ, σ), x ≤ µ+µ

2 ,

f(x;µ, σ), x >
µ+µ

2 .
(8)

The upper second MF with uncertain standard deviation
is:

h(x) = f(x;µ, σ) (9)

and the lower second MF is:

h(x) = f(x;µ, σ). (10)

3. PROPOSED METHOD

In the proposed method, the noise compensation is performed
through the T2F-GMM framework. The basic idea is to esti-
mate the intervals of the hypothesized speaker model’s pa-
rameters (Equations 2 and 3) and perform the verification

task using the log-likelihoods intervals provided by the frame-
work. The estimation process was designed in order to model
the parameters’ distortion resulted from possible unknown
background noise. A multiconditional training approach is
used for this purpose.

Uncertainty
EstimationUBM

Hypothesizedg
Speaker
Model

Φ0
NoisygUtterances

Synthesis

Φg,1 ...,ΦgL
TraininggUtterances

Parameters'gintervals

Fig. 1. Architecture of the proposed method. The system
estimates the uncertainty factors of the parameters (Km and
Kv) as an input to the T2F-GMM framework.

The proposed architecture is shown in Figure 1. From the
original speeches of the training set from speaker, Φ0, differ-
ent noisy utterances Φ1, . . . ,ΦL are synthesized by introduc-
ing degradation of different characteristics. The multicondi-
tion noisy speeches are then used to estimate the distortion of
the speaker model parameters. The uncertainty produced by
the distortions is modeled through the uncertainty factors.

Multiconditional training has been used in speech [14,15]
and speaker [11] recognition in order to increase robustness
to noise conditions that are different from the original train-
ing. The main idea of the proposed method is to use the mul-
ticondition noisy speeches to estimate the uncertainty of the
speaker model parameters. Both UBM and the speaker mod-
els are estimated in the same way as it was proposed by the
standard GMM-UBM [1]. The UBM model is estimated us-
ing the EM algorithm in speeches from a large number of
speakers. The speaker-specific model is estimated by adapt-
ing the UBM using the original training set Φ0 through a max-
imum a posteriori (MAP) estimation.

The multicondition noisy speeches were produced by
adding a White Gaussian Noise (WGN) at various Signal-
to-Noise Ratios (SNRs), similarly to the procedure used by
Ming et al. [11]. By decreasing the SNR at each step in the
synthesis, the distortion presented in Φl is greater than the
distortion presented in Φl−1, for 1 ≤ l ≤ L. The goal of
the proposed uncertainty estimation is to obtain an interval
for each parameter of the speaker model that is able to cover
the maximum range of distortion without losing its speaker-
specificity. The idea then is to track the parameter distortion
caused by the increase of the noise in the training speeches
and compare the distorted parameters to the parameters pre-
sented in the mixtures of the UBM.

In order to observe the parameters’ distortion caused by
the increase of the noise, the GMMs were estimated in cas-
cade using the synthesized speeches. The speaker model is
estimatedby the MAP adaptation of the UBM means using
Φ0, similarly to the standard GMM-UBM method. In any
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further stage of the cascade, the GMMl is estimated by the
MAP adaptation of the parameter of GMMl−1 using Φl, for
1 ≤ l ≤ L. Since GMMl−1 is estimated using Φl−1 and Φl
is noisier than Φl−1, it is possible to observe the corruption
of the parameter caused by the increasing in noise. Figure 2
illustrates this method for the corruption parameter P.

MAPUBM

GMM0

MAP

GMM1

...

GMM L-1

MAP GMML

Corruption of Parameter p

Φ Φ Φ0 1 L

pm p

Fig. 2. Schematic of the multiconditional training. A set of
GMMs with corrupted parameters {GMM1, . . . , GMM9} are
estimated in cascade by the MAP adaptation of the param-
eter of interest (p ∈ {m, v}) using the noisy speeches sets
{Φ1, . . . ,ΦL}.

The goal of the uncertainty estimation is to create the in-
tervals for each parameter of the speaker model, GMM0. By
defining the parameters’ intervals, Equations 7 to 10 is used to
compute the likelihoods intervals for the posterior verification
task. Since the covariance matrices are diagonal, the means
and standard deviations of each component of the model can
be analyzed independently. Consider µlij and σlij the mean
and the standard deviation of component i and dimension j
from GMMl, for 1 ≤ i ≤ M , 1 ≤ j ≤ D and 1 ≤ l ≤ L,
where M is the number of components of the models and D
is the number of features extracted from the speeches. Sim-
ilarly, consider µ̃ij and σ̃ij the correspondent values of the
UBM.

The parameters’ intervals are defined by the upper and
lower boundaries. The boundaries is set to maximize the pa-
rameters distortions without losing the speaker-specificity of
the model. Therefore, the parameters of the UBM are used to
restrict the boundaries.

To define the interval of the mean µij from GMM0, con-
sider the sets:

Ψ = {ψ|ψ = µ̃ij − σ̃ij and ψ > µij} (11)

and
Γ = {γ|γ = µ̃ij + σ̃ij and γ < µij}. (12)

The boundaries intervals of µij are limited by the interval
(γ∗, ψ∗), where

ψ∗ = min(Ψ) (13)

and
γ∗ = max(Γ). (14)

All the components of the UBM are used to define the
interval that restricts the boundaries of the parameters.

In order to maximize the coverage of the corrupted pa-
rameters, the upper boundary of µij is defined by the greatest
value of µlij that is lower than ψ∗, for 0 ≤ l ≤ L:

µij = max({µlij |µlij < ψ∗}). (15)

Similarly, the lower boundary is defined by the lowest
value of µlij that is greater than γ∗:

µ
ij

= min({µlij |µlij > γ∗}). (16)

On the other hand, the boundaries of σij must be defined
so that µij ± σij and µij ± σij are limited by the interval
(γ∗, ψ∗). For this reason, the upper and lower boundaries
are defined by the maximum and minimum values of σlij , for
1 ≤ l ≤ L, respectively.

3.1. Verification Task

Given a set of feature vectors X = {x1, . . . ,xT } extracted
from a testing utterance, the log-likelihood correspondent to
model λ is defined as υ(X|λ) = 1

T

∑T
i=1 log[p(xi|λ)].

The system then computes the intervals of the log-
likelihood of X for uncertain means and uncertain stan-
dard deviations using the intervals [µ, µ] and [σ, σ] that were
defined in the training phase. The likelihood p(xi|λ) is com-
puted using Equations 4 and 5. The exponential factors of
these density functions are replaced by the primary MFs in
Equations 7-10. The log-likelihood interval are obtained with
respect to the uncertain means [Lµλ, U

µ
λ ] and the uncertain

standard deviations [Lσλ, U
σ
λ ], where the subscript λ indicates

the considered model (speaker S or UBM).
The final score computed for X is defined by the com-

bination of the ratios between the upper boundaries and the
intervals, computed for the hypothesized speaker S:

Λ(X) =
UµS − U

µ
UBM

UµS − L
µ
S

+
UσS − UσUBM
UσS − LσS

. (17)

Finally the verification task is performed by thresholding
the computed score.

4. EXPERIMENTS

The main objective of the experiments is to compare the per-
formances of the proposed method and the GMM-UBM at
mismatched noise conditions. The systems were trained with
utterances of low noise and evaluated over three disjoint test
sets, each relative to a distinct noise level. For each test set,
the Equal Error Rate (EER) performance metric was com-
puted.

In order to observe the improvement of the proposed
method without other influence, neither pre-processing al-
gorithms [3], nor feature normalization techniques [2, 3]
were considered. The Mel Frequency Cepstral Coefficients
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(MFCCs) were computed in the feature extraction module.
The speech signals were framed in a 20 ms Hamming win-
dow with an overlap of 10 ms. A total of 19 coefficients were
extracted. The ∆1 and ∆2 were also computed and appended
to the MFCCs. Then, a 57-dimensional features vectors was
obtained.

The UBM was obtained by training two gender-dependent
models and pooling them together. Each speaker GMM was
estimated by MAP adaptation and only the top C best scoring
mixture components were used in the computation of the log-
likelihood ratio [1]. The experiments showed that the best
results are achieved when only the means are adapted and
by setting C = 10. The proposed method and the GMM-
UBM were trained with a variant number of mixtures M =
32, 64, 128, 256. Furthermore, for the proposed method a to-
tal of L = 9 multiconditional noisy speeches sets were syn-
thesized by varying the SNR from 20 dB (Φ1) to 4 dB (Φ9),
in a step of 2 dB.

The experiments were conducted using speeches from the
MIT Device Speaker Verification Corpus (MIT-DSVC) [16].
The speech data, collected on a hand-held device, consists of
two unique sets of enrolled users and dedicated impostors.
The set of enrolled users was collected during two different
sessions and the impostor set was obtained in a single ses-
sion. Both sets provide environmental noise variability since
each session occurred in three different locations: a quiet of-
fice, a mildly noisy lobby and a busy street intersection. Each
speaker recorded 18 utterances per location giving 54 exam-
ples by session. For the enrolled users set, 48 individuals (22
female and 26 male) participated while for the impostors set
40 individuals (17 female and 23 male) were recorded.

In this work, the training data consists of the utterances
from the first session recorded in a quiet office. Three test
sets were considered, each corresponding to a different loca-
tion and including speeches from the second session and the
impostors set. The systems were tested for each speaker us-
ing her/his speeches and the impostors set, totaling 738 trials
(18 true trials plus 18×40 false trials) per speaker. The EERs
were computed considering the trials performed for all speak-
ers in the set.

Table 1. The EERs (in %) of the system for different location
and mixtures.

Location GMM-UBM M T2F-GMM-UBM M
Office 7.18 64 5.77 64
Lobby 18.86 64 15.97 128
Street 24.5 64 18.63 256

The effects of the session noise variability are analyzed.
Table 1 shows the best performances for each location and
number of mixtures. The proposed method yielded consider-
able improvements for all three different location. Especially
in the busy street intersection, where a 24.11% gain in per-

formance was achieved. In both methods, the performances
decreases as the environmental noise increases. Nevertheless,
the proposed method presents a better performance in all three
situation compared to the GMM-UBM.

Table 2. The overall EERs (in %) of the systems for different
mixtures.

Nmix GMM-UBM T2F-GMM-UBM
32 18.28 16.86
64 16.86 15.34

128 18.44 13.73
256 23.31 13.73

We also analyzed the overall performance of the meth-
ods, in applications that does not take into consideration the
difference in the environment. Table 2 shows the average
EERs obtained for different number of mixtures. The pro-
posed method yielded better results for all numbers of mix-
tures. Comparing the worst case of the proposed method (32
mixtures) against the best case of the GMM-UBM (64 mix-
tures), the results shows that the performance are equal. Com-
paring the best performances of the systems, the T2F-GMM-
UBM approach presented a general improvement of 18.56%.
These results shows clearly that the proposed method has bet-
ter performance than the standard GMM-UBM framework
when considering mismatched noise conditions.

5. CONCLUSION

We propose a new scheme based on the multicondition model
training for estimating the uncertainty of the GMM param-
eters in text-independent speaker verification tasks with ses-
sion noise variability. The proposed T2F-GMM framework
and the standard GMM-UBM were evaluated on the MIT-
DSVC dataset using low noise speeches for training. The
results shows that the proposed method reduce the effects of
session noise variability when tested with the high noise ut-
terances. A relative EER reduction of 24.11% was obtained
when compared to the standard GMM-UBM model.
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