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ABSTRACT

I-vector has shown to be very effective in speaker verification with
long-duration speech utterances. But when test utterances are of
short duration, content mismatch between the enrollment and test
utterances limit the performance of i-vector system. This paper pro-
poses to extract local session variability vectors on different pho-
netic classes from the utterances instead of estimating the session
variability across the whole utterance as i-vector does. Using the
posteriors given by a deep neural network (DNN) trained for phone
state classification, the local vectors represent the session variability
contained in specific phonetic content. Our experiments show that
the content-aware local vectors are better at coping with the content
mismatch between training and test utterances of short durations for
text-independent, text-constrained and text-dependent tasks.

Index Terms— content-aware local variability, short-duration
utterance, speaker verification

1. INTRODUCTION

Over recent years, many approaches based on the Gaussian mixture
model-universal background model (GMM-UBM) [1] have been
proposed for speaker verification [2], among which i-vector has now
become the mainstream method [3]. Similar to a GMM supervector
[4], an i-vector is a fixed-length representation of a speech utterance,
which typically consists of varying number of frames. Different
from the supervector, an i-vector has a much lower dimensionality.
Channel compensation could therefore be performed using the prob-
abilistic linear discriminant analysis (PLDA) [5], which also serves
as the backend classifier. In [6, 7], a deep neural network (DNN)
trained for phone state classification was used to assume the role
of GMM, where frame alignment is now given by the phone state
posterior. The strong discriminative property of DNN improves the
frame alignment, and therefore the speaker verification performance.

I-vectors have proven to be very effective for text-independent
speaker verification when both the training and test utterances are
of long duration. For short duration, the content mismatch between
the training and test utterances makes it difficult for i-vectors to be
applied directly [8]. In [9, 10, 11], we proposed to model the lo-
cal session variability with respect to the Gaussian components or
dimensions of acoustic features. The local vectors offer a flexible
way to compare speaker information by matching specific phonetic
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context in a much similar fashion as in forensic speaker recogni-
tion [12]. However, the phonetic contents estimated with the local
vectors were ambiguous since the GMM was trained in an unsuper-
vised way and the dimensions of the acoustic feature vectors do not
have definite phonetic interpretations. In [13], frame alignment by
a DNN trained for monophonic phone-state classification was used
to estimate phone-centric local vectors for the monophones. In this
way, each local vector is endowed with clear phonetic interpreta-
tion. By implementing the PLDA scoring in a phone-aware manner,
the local vectors achieved performance improvement with respect
to i-vectors, providing a solution to the content matching for short-
duration utterances.

In [13], the experiments were conducted on a text-constrained
task. In this paper, we extend the scope of content matching to
a more general text-independent task and resort to the posterior
of a DNN acoustic model trained on tied-triphone Markov states
(senones). We propose to cluster the senones with each cluster
representing the phonetic information of similar senones by treating
the senones as Gaussian-like units. A local variability vector is
extracted for each cluster as an explicit representation of the session
variability contained in the cluster, called the content-aware local
vector. A PLDA model is trained on the local vectors for channel
compensation. In the PLDA modeling, the local vectors are mod-
eled in a content-aware manner but with the correlations among
them being considered.

The rest of this paper is organized as follows. Section 2 gives
an introduction to DNN i-vector. The content-aware local variability
vector is presented in Section 3. In Section 4, the content-aware
PLDA is described. The experiments are given in Section 5. We
draw our conclusions in Section 6.

2. DNN I-VECTOR

2.1. I-vector framework

The fundamental assumption of i-vector is that the feature vector
sequence of the utterance is generated from a session-specific GMM.
Furthermore, the mean supervector of the GMM mr is confined to a
low-dimensional subspace T with origin µ, as follows

mr = µ+ Twr (1)

where r = 1, 2, ..., R indexes the sessions. The matrix T is referred
to as the total variability matrix, and the model as the total variability
model. The latent variable wr is session-specific whose posterior
mean is the so-called i-vector [3].
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Fig. 1. Graphical model illustrating the difference between the to-
tal and local variability models. The latent variable w is used for
total variability model, while wc, for c = 1, 2, ..., C, are for local
variability model. For brevity, the session index r is dropped .

Fig. 1 shows the graphical model of the total variability model.
The subscript c = 1, ..., C are the indices to the C Gaussian compo-
nents in the model; and mc is the mean vector of the c-th Gaussian.
Given a speech utteranceO = {o1, ..., oT } with T to be the number
of frames, γc (t) is the occupancy of the t-th frame ot to the c-th
Gaussian. The channel and speaker variability observed in all the
Gaussian components are modeled jointly with the latent variable
w. This is reflected by allocating w outside the rectangular box for
the Gaussians with c = 1, ..., C at the bottom.

2.2. DNN i-vector

In [6] and [7], DNN trained for phone state classification was used
to align the frames. In the state-of-the-art automatic speech recogni-
tion(ASR) systems, context-dependent phones (e.g., triphones) are
represented by a number of hidden Markov states. Typically, the
Markov states are tied across the context-dependent phones using
a decision tree trained with a maximum likelihood (ML) criterion
[14]. In the GMM-HMM framework, the emission probabilities of
the tied-states are modeled with GMMs [15], while in a DNN-HMM
hybrid system, with a DNN. More precisely, each output node of the
DNN is trained to estimate the posterior probability of tied-states
given the acoustic observations [16].

The DNN for senonic acoustic modeling is illustrated in Fig. 2.
A set of C tied-states, i.e., senones, denoted as S = {s1, s2, ..., sC}
is modeled at the output layer. Given an input observation xt (usu-
ally concatenated with contextual frames), the values of the output
nodes are the senonic posterior probability p (sc|xt). By treating the
set of senones S modeled by the DNN as Gaussian-like units in the
UBM, it was shown in [6] and [7] that the Baum-Welch statistics,
and therefore the i-vector, could be extracted by replacing the frame
alignment with the senone posterior:

γc (t)← p (sc|xt) (2)

Using the frame occupancy γc (t), the mean vector and covariance
matrix of the c-th Gaussian in the total variability model are comput-
ed as follows:

µc =

∑
t γc (t) ot∑
t γc (t)

(3)

Σc =

∑
t γc (t) (ot − µc) (ot − µc)

T∑
t γc (t)

(4)
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Fig. 2. A deep neural network (DNN) trained for phone state classi-
fication. Here,W = {W1, ...,W6} is a set of the network parame-
ters (weight matrices and biases)).

The DNN i-vector is estimated as:

φ =

[
I +

C∑
c=1

NcT
T
cTc

]−1 [ C∑
c=1

TT
c F̃c

]
(5)

where Nc is the zero-order statistics computed as

Nc =
∑

t
γc (t) (6)

and F̃c is the first-order statistics centered to the mean µc and
whitened with respect to the covariance Σc [17] as follows:

F̃c = Σ−1/2
c

[∑
t
γc (t) (ot − µc)

]
(7)

Note that acoustic observation xt for the DNN and ot for the total
variability model are typically different. The former generally span
a wider context that is not required in the latter.

3. CONTENT-AWARE LOCAL VECTOR

Since senones are endowed with clear phonetic interpretations, in
this paper, we propose to extract content-aware local vectors using
the clustered senonic posterior probabilities for frame alignment.

3.1. Senone clustering

Different from the hand-crafted grouping method presented in [9],
[10] and [11], in this paper, the Gaussian-like units are clustered ag-
glomeratively based on the minimum log-likelihood cost [18]. Given
a background training dataset of R speech utterances, the likelihood
function is defined as

l =

R∏
r

C∏
c

Tr∏
t

N (or,t|µc,Σc)
γc(r,t) (8)

Taking the logarithm of (8), the log-likelihood is given by

L =

C∑
c=1

Nclog
1

(2π)D/2 |Σ|1/2
− 1

2

C∑
c=1

tr
(
Σ−1
c Sc

)
+

C∑
c=1

(
µT
cΣ
−1
c Fc

)
− 1

2

C∑
c=1

(
µT
cΣ
−1
c µcNc

) (9)

5486



where Nc, Fc and Sc are the zero, first and second order statistics
accumulated across R utterances as follows:

Nc =

R∑
r=1

Tr∑
t

γc (r, t) (10)

Fc =

R∑
r=1

Tr∑
t=1

γc (r, t) or,t (11)

Sc =

R∑
r=1

Tr∑
t=1

γc (r, t) or,to
T
r,t (12)

where or,t is the t-th frame from the r-th utterance; γc (r, t) is its
posterior occupancy on the c-th senone; and Tr denotes the number
of frames in the r-th utterance. Note that the first-order statistics Fc
in (11) is calculated without centering or whitening as what was done
for F̃c in (7). During the clustering, every unit is merged with the
rest and the log-likelihoods are calculated given the merge. The one
results in maximum log-likelihood (i.e., minimum log-likelihood
cost) is selected. Let ς be the parameters (mean and covariance) of
the Gaussian-like unit. The parameters are updated as:

ςcc′ =
Ncςc +Nc′ςc′

Nc +Nc′
(13)

where two Gaussian-like units c and c′ are merged to form the
merged unit cc′. Similarly, the statistics of the merged unit is
obtained by pooling those from the component units

κcc′ = κc + κc′ (14)

where κ represents the set of statistics as κ = {N,F,S}. The merg-
ing is done iteratively until the target number of clusters is obtained.
With clustering, the senones of close Markov states are further tied
and each cluster can be regarded as the representation of a certain
phonetic class. Notice that our implementation is different from that
of [18] where the likelihood were calculated on the frame instead of
the statistics level. Furthermore, we resort to local variability mod-
eling in the i-vector extraction which allows content matching in the
PLDA scoring.

3.2. Content-aware local vector estimation

AssumingK clusters are trained, by treating the senones as Gaussian-
like units, K local variability vectors can be estimated. De-
noting the set of senones in the k-th (k = 1, ...,K) cluster as

Sk =
{
sik1
, ..., sikj

, ..., sik
Ck

}
where Ck denotes the number of

senones in the k-th cluster and ij for j = 1, ..., Ck denotes the index
of the j-th senone, the local variability model can be described as

mr,k = µk + Vkwr,k (15)

where µk is the mean vector of the k-th cluster; Vk is the corre-
sponding local variability loading matrix, and wr,k is its local latent
variable. The posterior mean of wr,k is defined as the content-aware
local vector, computed as:

φk = L−1
k

Ck∑
j=1

[
Vk,ij

]T
F̃k,ij (16)

where Lk is the posterior precision matrix of wk calculated as

Lk = I +

Ck∑
j=1

Nk,ij
[
Vk,ij

]T
Vk,ij (17)

For simplicity, the utterance index r is dropped from (16) and (17).
Since the senone clusters are phonetic related, the local vectors
therefore representing the session variability under the respective
phonetic context, named as the content-aware local vectors.

4. CONTENT-AWARE CHANNEL COMPENSATION

For the r-th speech utterance of speaker s, a local composite vector
can be obtained by concatenating its content-aware local vectors as
φs,r =

[
φT
1,s,r, ..., φ

T
K,s,r

]T
. A PLDA model is trained on these

vectors to get rid of the influence of channel variability on speaker
comparison [5]:

p (φs,r) = N
(
ω,ΦΦT + ΩΩT + Λ

)
(18)

where ω, Φ, Ω and Λ are the global mean vector, speaker sub-
space, channel subspace and residual covariance. The parameters
are trained using similar EM algorithm presented in [5]. In terms of
the local vectors, the PLDA model can be decomposed as

φk,s,r = ωk + Φkhs + Ωkxk,s,r + εk (19)

where ε denotes the residual and the subscript k indicates the sub-
matrices and subvectors corresponding to the k-th local vector. From
this perspective, the speaker information in the local vectors can be
compared under the same phonetic context. On the other hand, with
the speaker and channel subspaces being trained on the composite
vector, the correlations between phonetic classes are also considered
in the form of covariance as:

Λ̃← ΦΦT + ΩΩT + Λ (20)

5. EXPERIMENTS

5.1. Experiment setup

In our experiments, the DNN was trained on Fisher and Switchboard
dataset using the Kaldi toolkit [19]. The feature vectors for the DNN
were 40-dimensional filter bank coefficients with first and second
derivatives appended, leading the dimension of the features to be
120. The input feature is concatenated with 5 frames before and
after it as the input to the network. The structure of the network
is 1320-2048×5-556 with 556 to be the number of senones. After
eliminating 20 senones associated with silence, laughter, noise and
OOV, 536 valid senones are used for variability modeling.

The acoustic features for speaker modeling was 19-dimensional
MFCC feature with its first and second derivatives appended on
which RASTA and CMVN were applied. Given the DNN posteri-
ors, the parameters of the UBM with full covariance was calculated
with data selected from NIST SRE’04, 05, 06 and Switchboard. The
total and local variability models were trained with the data drawn
from NIST SRE’04, 05, 06 and Switchboard. Both the UBM and
variability models were trained in a gender-dependent manner. The
dimension of the DNN i-vector was set to 400. The PLDA consisted
of a speaker subspace of rank 200 and a full residual covariance.
For local variability model, the senones were clustered to 13 groups
and each group was associated with a local vector of dimension
50, resulting in a 13 × 50 = 650-dimensional content-aware (CA)
local vector for each speech utterance. The PLDA on the CA local
vector was composed of a speaker subspace of rank 200, a channel
subspace of rank 650 and a diagonal residual covariance. The per-
formance was evaluated based on the equal-error-rate (EER) and the
minimum detection cost function (DCF) [20] defined for SRE’08.
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Table 1. Performance (EER(%)/mDCF08×100) of DNN i-vector
(DNN i-vec) and content-aware local vectors (CA-lv) on condition 6
of short2-short3, short2-10sec, 10sec-10sec of NIST SRE’08 trails.

male female

shor2-
short3

# non / # tar 11,637 / 874 21,563 / 1,802
DNN i-vec 4.25 / 22.44 6.10 / 32.76

CA-lv 4.63 / 25.23 6.62 / 35.84

shor2-
10sec

# non / # tar 6,766 / 508 12,159 / 1,001
DNN i-vec 9.28 / 46.28 12.63 /61.91

CA-lv 8.49 / 44.92 11.78 / 58.21

10sec-
10sec

# non / # tar 6,528 / 493 11,899 / 979
DNN i-vec 19.95 / 84.81 22.67 /89.17

CA-lv 14.04 / 72.09 16.84 / 72.70

Table 2. Performance (EER(%)/mDCF08×100) of DNN i-vector
(DNN i-vec) and content-aware local vectors (CA-lv) on RSR2015
part I : text-constrained and text-dependent trials respectively.

male female

text-
constrained

# non / # tar 215,656 / 4,404 189,940 / 4,135
DNN i-vec 9.38 / 4.83 13.22 / 6.14

CA-lv 7.69/4.10 11.49 /5.89

text-
dependent

# non / # tar 387,230 / 8,419 437,631 / 8,931
DNN i-vec 5.31 / 2.42 6.03 /2.99

CA-lv 4.68 / 2.22 5.65 / 3.02

5.2. Results

We experimented on the text-independent, text-constrained and text-
dependent tasks in the following.

Text-independent experiments: The experiments were carried
out on NIST SRE’08 where two nominal durations were includ-
ed, i.e., 10 seconds and 2.5 minutes after voice activity detection
(VAD). The PLDA models on the DNN i-vector and the CA local
vector were trained with the telephone data from NIST SRE’04,
05 and 06 in a gender-dependent manner. Three tasks were tested:
short2-short3, short2-10sec and 10sec-10sec. Since the short2 and
short3 utterances of 2.5 minutes are supposed to contain almost all
the lexical variability while the 10-second utterances only contain
a part, content mismatch is a problem for the short2-10sec and
10sec-10sec tasks but not the short2-short3 task. The performances
of DNN i-vector and CA local vectors in the three tasks are given in
Table 1. We can see that the CA local vectors outperform the DNN
i-vector in handling the content mismatch in the short2-10sec and
10sec-10sec tasks by comparing the speakers in the utterances based
on the phonetic classes. No performance gain was achieved on the
short2-short3 task where there is no content mismatch problem.

Text-constrained experiments: The RSR2015 dataset [21] was
used in the experiments, which consists of 300 speakers and is divid-
ed into background (bkg), development (dev) and evaluation (eval)
subsets. Part I of the dev subset was used in our experiments whose
lexical content is constrained to 30 short sentences drawn from TIM-
IT dataset with an average nominal duration of 1.25s after VAD. Text
constraint is reflected in that the text of every utterance is one of the
30 sentences. The testing trials were extracted from the configura-
tion “3sessall dev” by deleting the 16-30 utterances from enrollment
and 1-15 from test. This makes the text in the test utterance unseen
by the enrollment utterances. The speeches were downsampled to 8
kHZ. The PLDA model was trained in a gender-independent manner,
using all the utterances in part I of the speakers in the bkg subset.
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Fig. 3. Occupancies in the 13 clusters of one utterance from short3
and RSR Part I respectively.

Text-dependent experiments: We adopted the configuration
“3sess-pwd dev” of part I. Each trial is based on a certain sentence,
whose recordings of sessions 1, 4 and 7 are used for speaker enroll-
ment while those of the rest sessions for test. The PLDA models in
the text-constrained experiment were used.

Table 2 presents the performance comparisons of DNN i-vector
and CA local vectors on the text-constrained and text-dependent
tasks where the CA local vectors perform superiorly to the DNN
i-vector. Since the lexical contents for test are unseen by the enroll-
ment utterances in the text-constrained task, the superiority of the
CA local vectors owes to its speaker comparison with respect to the
phonetic classes, showing the capability of them in coping with the
content mismatch.

In the text-dependent task, the sentences in the test and enroll-
ment utterances are the same. Like the short2-short3 task of NIST
SRE’08, there is no content mismatch. However, it’s interesting to
see that the CA local vectors outperform the DNN i-vector. This
further validates the effectiveness of the CA local vectors for short
duration utterances. Fig. 3 gives the occupancies of two random-
ly chosen utterances from short3 and RSR Part I on the 13 clusters
respectively. We can see that the occupancies of the utterance from
RSR on all of the 13 clusters are small (about 1/50 of those from the
short3 utterance). As a result, the variability vector estimated for the
RSR utterance is more sensitive to the occupancies. The local vec-
tor estimated in a cluster catches the minor variability in the cluster
which cannot be modeled by an i-vector. Also shown in Fig. 3, giv-
en an utterance from RSR or short3, none of the occupancies in the
clusters is zero, making it unnecessary to select the local vectors for
content matching as what we did in [13].

6. CONCLUSION

We proposed to estimate the content-aware local vectors on class-
es of senones which are modeled with a deep neural network. The
local vectors provide the representations of the session variability
contained in the phonetic contents. PLDA was applied as the chan-
nel compensation technique which can compare the local vectors in a
content-aware manner while considering their correlations. Our ex-
periments show that the content-aware local vectors outperform the
DNN i-vector in the trials where short utterances are included. This
results show the potential of the proposed local vector in coping with
the content mismatch problem in short utterances.
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