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ABSTRACT

In this paper, automatic speaker verification using normal and

whispered speech is explored. Typically, for speaker verifica-

tion systems with varying vocal effort inputs, standard solu-

tions such as feature mapping or addition of data during pa-

rameter estimation (training) and enrollment stages result in

a trade-off between accuracy gains with whispered test data

and accuracy losses (up to 70% in equal error rate, EER) with

normal test data. To overcome this shortcoming, this paper

proposes two innovations. First, we show the complemen-

tarity of features derived from AM-FM models over conven-

tional mel-frequency cepstral coefficients, thus signalling the

importance of instantaneous phase information for whispered

speech speaker verification. Next, two fusion schemes are

explored: score- and feature-level fusion. Overall, we show

that gains as high as 30% and 84% in EER can be achieved

for normal and whispered speech, respectively, using feature-

level fusion.

Index Terms— Whispered speech, AM-FM model, i-

vectors, speaker verification, system fusion, feature mapping.

1. INTRODUCTION

Biometrics based applications are helping to prevent fraud by

combining mathematics and digital signal processing tech-

niques. Such technologies are burgeoning for identity man-

agement as they eliminate the need for personal identification

numbers, passwords, and security questions [1]. Notwith-

standing, several challenges and unresolved problems are still

present hampering widespread usage. For example, biomet-

rics recognition is compromised by external factors that may

alter the patterns that are being analyzed (e.g., cuts and burns

to the finger in fingerprint-based systems; ambient noise in

speech-based solutions), as well as by natural human physio-

logical factors, such as aging and disease (e.g., in facial and

speech-based systems) [1, 2].

According to recent statistics, speech-based biometrics

have ranked highly in consumer preference, outranking fin-

gerprint and iris scanning solutions [3, 4]. Despite speech-

based biometrics gaining grounds, two factors have posed
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serious threats to its performance: ambient noise and vary-

ing vocal efforts. Ambient noise has detrimental effects on

speaker recognition performance, particularly those trained

with mel-frequency cepstral coefficients (MFCC). As an

example, accuracies as low as 7% have been reported in

very noisy environments [5]. As such, over the years sev-

eral speech enhancement algorithms have been proposed for

environment-robust speaker recognition applications [6, 5].

Varying vocal efforts, however, have received significantly

less exposure, despite their severe detrimental effects on

speaker verification performance. For example, accuracies as

low as 20% have been reported for whispered-speech speaker

identification [7] in clean conditions. In fact, it is highly

likely that customers utilizing a mobile banking application

on their smartphones will whisper sensitive information.

Over the last few years, a handful of strategies have been

reported to improve the performance of whispered speech

speaker recognition, particularly within training/test mis-

match [8, 7, 9]. Improvements, however, have been minimal.

Another strategy, which has not been widely explored, is to

use feature mapping. A recent study showed that such an

approach can be helpful in speaker identification scenarios

when the input presented is shouted speech [10]. For fea-

ture mapping, neural networks and Gaussian mixture models

have been widely used in the voice conversion and voiced

speech reconstruction (from whispered speech) literature

[11, 12, 13]. It is not clear, however, if such mappings alter

speaker identity information relevant for automated speaker

recognition. This paper explores the advantages of feature

mapping alongside other mismatch compensation strategies.

Typically, two main strategies are used to handle the mis-

match problem, namely, (1) multiple model recognizer, where

dedicated speaker models are obtained for different vocal ef-

forts (e.g., [14]) and (2) multi-style models, where each model

is obtained from a combination of normal speech and small

amounts of speech of varying vocal efforts [15, 14]. Notwith-

standing, the two different methods were shown to have their

advantages and disadvantages. For example, while both im-

prove the performance of whispered speech [8, 14], multi-

ple model training requires significant amounts of whispered

speech data to obtain the speaker models, which can be hard

to obtain in practice. Multi-style based systems, in turn, de-
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spite requiring lower amounts of whispered speech to train the

models, trade gains in whispered speech to losses in normal

speech accuracy, often by the same amount [14].

The goal of this paper is to propose a practical strategy to

design a speaker verification system capable of handling two

different speaking styles by exploring the use of feature map-

ping, alternate feature representations, as well as two fusion

strategies, namely score- and feature-level fusion.

2. AUTOMATED SPEAKER VERIFICATION

In speaker recognition the two most popular tasks are speaker

identification (SI) and speaker verification (SV). Commonly,

SV exhibits greater practical applications related to SI, espe-

cially in access control and identity management applications.

Whispered speech, in the past, has been explored mainly for

the SI problem within a reduced amount of speakers or using

only female speakers [8, 7, 9]. This paper aims to fill this gap

by combining three different databases with both male and

female speakers.

2.1. Feature extraction

2.1.1. Mel-frequency cepstral coefficients (MFCC)

Standard MFCC features were extracted following conven-

tional steps, including pre-emphasis, 27 triangular mel-

spaced bandpass filters, 25ms windows, and 40% overlap.

Thirteen coefficients were extracted, including the 0th coeffi-

cient (log-energy), and were appended by delta and double-

delta coefficients, each found using a 9-point anti-symmetric

filter to avoid phase distortion. Lastly, cepstral mean and vari-

ance normalization was utilized during active speech periods

to remove unwanted linear channel effects.

2.1.2. AM-FM derived features

The AM-FM model decomposes the speech signal into band-

pass channels and characterizes each channel in terms of

its envelope and phase (instantaneous frequency) [7]. The

speech signal s(n) is filtered through a bank of NK filters,

resulting in the bandpass signal yk(n) = s(n) ∗ hk(n), where

hk(n) corresponds to the impulse response of the k-th fil-

ter. Originally, in [7], it was proposed to use a 80-channel

Gabor filterbank, however in our experiments a 27-channel

gammatone filterbank was used instead, with filter center

frequencies (fck) ranging from 100 Hz to 7000 Hz and band-

widths characterized by the mel scale. It was concluded from

a pilot experiment that this is an optimal setting for our pur-

poses. After filtering, each analytic subband signal sk(n)
is uniquely related to a real–valued bandpass signal yk(n)
by sk(n) = yk(n) + j · ŷk(n), where ŷk(n) represents the

Hilbert transform of yk(n). In this work, the Hilbert enve-

lope approach is used to decompose each analytic signal in

terms of its envelope and phase. For the sake of notation,

let ak(n) denote the low–frequency modulator and fk(n) the

instantaneous frequency for each bandpass signal.

Here, the set of features based on the AM-FM model is the

so called Weighted Instantaneous Frequencies (WIF). These

features are computed by combining the values of ak(n) and

fk(n) using a short-time approach, more specifically:

Fk =

n0+τ∑

i=n0

fk(i) · a
2
k(i)

n0+τ∑

i=n0

a2k(i)

, k = 1, . . . , 27, (1)

where n0 is the starting sample point and τ is the length of the

time frame. To maintain the analogy with the MFCCs, here

the WIF features were also computed on a per-window basis

using a 25 ms window with 40% overlap. Pre-emphasis and

feature normalization were not required and WIF features are

expressed in kHz, as suggested by [7].

2.2. Feature mapping

Two feature mapping techniques were evaluated in our ex-

periments. The first is the classical Gaussian mixture model

(GMM) regression [16]. Such method models both the source

and the target feature vectors using a joint density GMM

of aligned normal and whispered speech features. Model

parameters are estimated using the standard expectation-

maximization (EM) algorithm. With the estimated parame-

ters a mapping function is formulated to compute the mini-

mum mean square error estimate of the target feature vectors.

This mapping can be used to transform whispered to normal

speech features or vice-versa, by properly defining source and

target feature vectors. Details can be found in [16]. Herein,

full covariance matrices were used and the number of Gaus-

sians was varied on the training stage. The best results are

reported using a model with 128 components.

The second technique is based on neural networks, which

have been shown useful in the voice conversion literature

[11]. Here, we explore the use of emerging deep neural net-

works (DNN), which have achieved state-of-the-art results

across several research domains. We explore their flexibil-

ity in learning the direct mappings between the whispered

and normal speech features. Two stacked pre-trained au-

toencoders [17] with 512 hidden units each were used in our

experiments. This technique is also used to transform whis-

pered to normal speech features or vice-versa, depending on

the specific setting.

2.3. i-vectors/PLDA approach

Current state-of-the-art speaker verification systems are based

on i-vector extraction features and Probabilistic Linear Dis-

criminant Analysis (PLDA) based scoring. A brief descrip-

tion of these two tools is given below for the sake of complete-

ness. In the experiments herein, the open-source Bob signal

processing toolbox was used [18]. For i-vector extraction,

speaker and session-dependent supervectors of concatenated

GMM means are modeled as M = m + Tφ, where m is the

speaker- and channel-independent supervector, T ∈ R
CF×D

is a rectangular matrix of low rank covering the important

variability (total variability matrix) in the supervector space.
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C, F and D represent, respectively, the number of Gaussians

in the universal background models (UBM), the dimension

of the acoustic feature vector and the dimension of the to-

tal variability space. Finally φ ∈ R
D×1 is a random vec-

tor with density N (0, I) and referred to as the identity vector

or i-vector [19]. This procedure is complemented with some

post-processing techniques such as linear discriminant anal-

ysis (LDA), whitening, and length normalization to remove

nuisance effects in the total variability space. The interested

reader is referred to [19] for more complete details.

Probabilistic linear discriminant analysis (PLDA) based

scoring is used to compare a test utterance and a target

speaker. This approach was formulated in [20] as φij =
µ + V yi + Uxij + εij , where φij is the i-th feature vec-

tor associated to the j-th speaker, the matrices V ∈ R
D×P

and U ∈ R
D×M span the between- and within- individual

spaces, µ is a global mean, yi ∼ N (0, I) and xij ∼ N (0, I)
are hidden variables in the spaces spanned by V and U ,

respectively, and the residual εij ∼ N (0,Σ) is defined

to be Gaussian with zero mean and diagonal covariance

Σ. In a verification scenario, there are two possible hy-

potheses: 1) φtest and φenrol share the same class, and

2) φtest and φenrol are from different classes. Lastly, the

corresponding score can be obtained by computing the log-

likelihood between the two hypotheses, which is given by

s = ln(P (φtest, φenrol)) − ln(P (φtest)P (φenrol)); details

can be found in [20, 21].

2.4. Fusion strategies

Two fusion schemes were also investigated in this paper: i)

score-level fusion and ii) feature fusion. In the former, sep-

arate data (different from background and target speakers) is

needed and two systems trained on MFCC and WIF feature

sets, respectively, are evaluated using an unseen evaluation

set (see Section 3.1). A logistic regression function is then

found to map the evaluation scores into a final decision using

the Brosaris toolkit [22]. With feature fusion, in turn, MFCC

and WIF features are concatenated into a final 66-dimensional

feature vector (39 MFCC + 27 WIF). Principal component

analysis is then performed to remove redundant features and

only the top-30 components are kept as features.

3. EXPERIMENTAL RESULTS

3.1. Corpus description

In our experiments, three different databases were used, the

CHAINS (Characterizing Individual Speakers) speech corpus

[7], wTIMIT (whispered TIMIT) [23] and TIMIT databases

[24]. The CHAINS and wTIMIT databases contain normal

and whispered speech. Table 1 presents details about the

number of speakers and recordings per speaker.

Speakers from the three databases were divided in two

disjoint sets, one for development (parameter estimation of

GMM, T-matrix and PLDA) and the other for enrollment and

testing (target speakers). Recordings from 462 speakers from

Database
No. of speakers Recordings/speaker

Female Male Normal Whisper

TIMIT 192 438 10 –

wTIMIT 24 24 450 450

CHAINS 16 20 37 37

Table 1. Details of the three databases used in this work

TIMIT database and 14 speakers from wTIMIT were included

in the development set. Recordings from 100 speakers from

the TIMIT database, 24 speakers from wTIMIT and 36 speak-

ers from CHAINS, in turn, were included in the target speak-

ers set. Average duration for all speech recordings is 4.5 sec-

onds. To characterize the baseline system, we included only

normal speech recordings from both the development and tar-

get speakers sets. During enrollment eight recordings per

speaker were used; for testing, however, we used two record-

ings per speaker, and if there are whispered speech recordings

available, then two additional utterances were included.

To train the score-level fusion system we selected an in-

dependent set of speakers, 68 from the TIMIT database and

10 from the wTIMIT database, to create a new evaluation

list. For enrollment, a configuration similar to the one used

for the original evaluation list was used, including eight addi-

tional recordings of whispered speech for the 10 speakers of

wTIMIT. For the new evaluation list, in order to have approx-

imately the same amount of target and impostor scores from

each speaking style, two recordings of normal speech and 15

recordings of whispered speech per speaker were used.

3.2. Results and discussion

Table 2 reports the equal error rate (EER) results obtained

with the standard i-vector/PLDA based SV paradigm using

the conventional MFCC features. Three cases are reported:

Baseline illustrates the scenario where only normal speech is

available for training and enrollment, no feature mapping is

applied and no whispered speech features were used for pa-

rameter estimation. Case a): illustrates the case where normal

speech features from the enrollment set were mapped to whis-

pered ones using GMM or DNN mapping functions. Case b),

in turn, exemplifies the scenario where whispered speech fea-

tures in the test set were mapped to normal speech ones using

the GMM/DNN mapping functions. Latter case assumes an

oracle normal/whisper classification system, thus the results

for normal speech are unaffected. For clean conditions, this

is not an unrealistic assumption [25]. In both Case a) and

b), whispered speech features from the development set were

also included during parameter estimation because by using

only the mapped features slight improvements were observed

(in the order of 2%). The three columns represent no feature

mapping (none) and GMM or DNN based mapping.

As can be seen from the Table 2, both feature mappings

add some gains when testing with whispered speech, with rel-

ative improvements of up to 37%. Table 3 in turn, compares

the feature mappings in terms of mean cepstral distance and
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Normal Whispered

Scenario Feature Mapping

none GMM DNN none GMM DNN

Baseline 2.93 – – 28.00 – –

Case a 4.06 8.75 6.25 19.15 24.17 20.00

Case b 4.06 4.06 4.06 19.15 17.50 21.07

Table 2. EER comparison with the baseline system and the

two feature mappings in different scenarios. For these results

C = 256, and D = 200.

Evaluation Norm to Whsp Whsp to Norm

Measures GMM DNN GMM DNN

MCD 13.84 12.78 13.96 12.75

εrms 0.644 0.596 0.649 0.595

Table 3. Evaluation measures comparison between the two

feature mapping techniques. MCD - Mean Cepstral Distance

and εrms - root mean square error

root mean square error. In terms of these measures the DNN

performs better than the GMM; however this is not reflected

in the EER results. As such, the GMM mapping seems to

be optimal to compensate when whispered speech is present

during testing. These results also show that the addition of

whispered speech during parameter estimation does not suf-

fice to boost performance when testing with this speaking

style because, in this case, whispered speech data does not

contain enough inter-speaker variability. As has been shown

before, addition of recordings from target speakers, even in

small amounts, is the solution that seems to effectively close

the gap in performance between normal and whispered speech

[8, 26]. This, however, comes with an increase in the error

rate for normal speech, the goal in score and feature fusion

is to overcome this limitation and develop a system that per-

forms well with both whispered and normal speech.

Table 4, in turn, shows the EER values for the two pro-

posed fusion schemes under two cases and compares it with

the standard MFCC based system. Case 1 exemplifies the

scenario where whispered speech is available during both

training and testing, but not during enrollment. Case 2, on the

other hand, exemplifies the setting where whispered speech

is available in all three stages. Relative to results for MFCC

features, the gains attained with score-level fusion were ap-

proximately 61% and 20% for normal and whispered speech,

respectively. By adding whispered speech during training

and enrollment, (i.e., Case 2) score-level fusion resulted in

slight increases in EER for normal speech, but in signifi-

cant drops in EER for whispered speech. Overall, the final

performance attained with score-level fusion was 53% and

38% lower than using only MFCC, for normal and whispered

speech respectively. As can be seen, score level fusion and

adding small amounts of whispered speech to training and

enrollment stages has shown to be a useful strategy to achieve

reliable results for both normal and whispered speech.

Normal Whisper

Scenario Fusion level

MFCC SCF FF MFCC SCF FF

Case 1 4.06 1.56 0.74 19.15 15.49 17.69

Case 2 5.56 2.57 2.03 8.90 5.45 4.35

Table 4. EER comparison between the two fusion schemes:

score and feature fusion with the standard MFCC based sys-

tem. For these results C = 256, and D = 200. SCF stands

for score fusion and FF stands for feature fusion.

For feature-level fusion, also significant gains were ob-

served for normal speech under Case 1, 80% lower EER rel-

ative to MFCC alone, and 7% for whispered speech. Case

2, once whispered speech was incorporated during training

and enrollment, the obtained EER was 63% lower for normal

speech, relative to using only MFCC features and 51% lower

for whispered speech. Results from standalone WIF features

were not included as they were slightly better than MFCC but

the benefits of their use was observed in the fusion schemes.

According to the results, feature-level fusion showed to

play an important role for both normal and whispered speech

speaker verification, this strategy helps to avoid negative ef-

fects in normal speech performance while adding whispered

speech during training and enrollment. This is an important

finding for practical systems relying on either type of vocal

effort input. An additional advantage of the feature-level fu-

sion scheme is that it relies only on training of the PCA di-

mensionality reduction step and of one speaker verification

system. The score-level fusion scheme, on the other hand,

relies on the training of two automated SV systems (one for

each feature set), as well as one score fusion scheme. Finally,

experiments suggest that whispered speech can carry as much

speaker identity information as normal speech, but such in-

formation has to be properly extracted and WIFs appear to be

a good set of features to complement the classical MFCC and

extract additional information from speech recordings.

4. CONCLUSION

This paper has addressed the issue of speaker verification

based on whispered speech. Train/test mismatch conditions

have been shown to be a serious challenge for automated SV

systems and previous studies have suggested the inclusion

of whispered speech during training and enrollment stages.

Here, we have shown that simple inclusion of small amounts

of whispered data combined with feature mapping techniques

does not suffice and two additional fusion schemes are pro-

posed: score- and feature-level fusion. Over simple addition

of whispered speech during training, gains by as much as

34% and 36% in EER could be achieved with score-level

fusion and feature fusion, respectively. Moreover, we have

shown the importance of features that rely on instantaneous

phase information for the task at hand. When combined

with conventional MFCC features, complementary speaker

identity information was observed.
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