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ABSTRACT 
 

This paper presents the Speech Technology Center (STC) 

systems submitted to Automatic Speaker Verification Spoofing 

and Countermeasures (ASVspoof) Challenge 2015. In this 

work we investigate different acoustic feature spaces to 

determine reliable and robust countermeasures against spoofing 

attacks. In addition to the commonly used front-end MFCC 

features we explored features derived from phase spectrum and 

features based on applying the multiresolution wavelet 

transform. Similar to state-of-the-art ASV systems, we used the 

standard TV approach for probability modelling in spoofing 

detection systems. Experiments performed on the development 

and evaluation datasets of the Challenge demonstrate that the 

use of phase-related and wavelet-based features provides a 

substantial input into the efficiency of the resulting STC 

systems. In our research we also focused on the comparison of 

the linear (SVM) and nonlinear (DBN) classifiers. 
 

Index Terms-spoofing, anti-spoofing, speaker recognition, 

phase spectrum, wavelet transform, TV, SVM, DBN 

 

1. INTRODUCTION 
 

Information technology plays an increasingly large role in 

today’s world, and different authentication methods are used 
for restricting access to informational resources, including 

voice biometrics. Examples of the use of speaker recognition 

systems include internet banking systems, customer 

identification during a call to a call center, as well as passive 

identification of a possible criminal using a preset “blacklist” 
[1], [2]. Due to the importance of the information that needs to 

be protected, requirements for biometric systems are high, 

including robustness against potential break-ins and other 

attacks. 

Performance of basic technologies in voice biometrics has 

greatly improved in recent years. For instance, the latest 

overviews of speaker recognition systems showed that EER is 

down to 1.5-2% for text-independent [3] and down to 1% for 

text-dependent [4] speaker recognition systems in various 

conditions. 

With the growth of interest in reliable ASV systems, the 

development of their spoofing techniques increased 

tremendously [1]. A multitude of different spoofing methods 

was proposed in literature. For example, [5] describes methods 

based on “Replay attack”, “Cut and paste”, “Handkerchief 
tampering” and “Nasalization tampering”. Speech synthesis 

approaches [6] are also widely used for spoofing purposes. 

Despite the development of new spoofing detection 

methods, most of ASV spoofing countermeasures presented so 

far depend on a training dataset related to a specific type of 

attack, while the nature of the spoofing attack is usually 

unknown in real practice. Several papers on the ASV system 

robustness evaluation against spoofing attacks [5], [7], [8] 

show that it is highly important to develop new anti-spoofing 

techniques to detect unforeseen spoofing attacks when details 

of the spoofing attacks are unknown, in order to  keep the 

required EER level. That was the motivation for organizing the 

ASVspoof Challenge 2015 [9] where spoofing detection 

methods for known [1] and unknown spoofing types were 

evaluated. ASVspoof Challenge 2015 was focused on a stand-

alone spoofing detection task. 

In this paper we describe several spoof detection systems 

that were proposed for the ASVspoof Challenge 2015. 

For participation in the challenge we used the standard 

Total Variability (TV) approach for statistical modelling of the 

acoustic features of the speech signal. As a classifier we 

applied Support Vector Machine (SVM) or, alternatively, Deep 

Belief Network (DBN). 

In the paper we concentrate on researching the most 

appropriate front-end features for the spoofing detection system 

we propose. In particular, we investigated acoustic features 

based on the phase spectrum information and features derived 

by applying the wavelet transform [10]. The aim of our 

research was to find the most effective method for detecting 

unknown spoofing attacks. 

The remainder of this paper is organized as follows. 

Section 2 overviews all the proposed spoof detection systems 

with a brief description of the subsystems it consists of. Section 

3 introduces acoustic feature extraction methods in detail. 

Experimental work is described in Section 4. Finally, our 

conclusions are presented in Section 5. 

 

2. OVERALL SYSTEM DESCRIPTION 
 

All our systems consist of three main components (Figure 1): 

 Acoustic feature extractor 

 TV i-vector extractor 

 Classifier 

After experiments on the training part of the ASVspoof 

Challenge 2015 database we decided to include pre-detection 

as a preliminary step in the spoof detection system. The pre-

detector checks whether the input speech signal has zero 

temporal energy values. In case of zero-sequence the signal is 

declared to be a spoofing attack, otherwise (or in case of a 

detection system without the pre-detection step) the speech 

signal is used as input data for the feature extractor. 

Acoustic feature extractors in our systems are 

combinations of several different acoustic feature extraction 

methods. All the features we proposed during the ASVspoof 

Challenge 2015 will be described in details in Section 3. 
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Figure 1: Scheme of spoof detection system. 

The obtained feature vectors are used by the i-vector 

extractor to get i-vectors from different feature types. These i-

vectors are then concatenated in one common i-vector, which is 

centered and length-normalized. 

Finally, the classifier calculates the resulting score to 

estimate if the speech signal is a spoofing attack or not (Figure 

1). 

 

2.1. Total variability modeling 
 

In our work for the acoustic space modelling we used the 

standard TV approach, which is the state-of-the-art in speaker 

verification systems [3], [4], [11]. According to this version of 

the joint factor anlysis, the i-vector of the Total Variability 

space is extracted by means of Gaussian factor analyser defined 

on mean supervectors of the Universal Background Model 

(UBM) and Total-variability matrix T. UBM is represented by 

the diagonal covariance Gaussian mixture model of the 

described features. 

 

2.2. SVM-Classification 
 

In our work we used an SVM classifier with a linear kernel. 

The separating hyperplane was trained in normalized i-vectors 

space (Figure 1) on the training part of the ASV spoof 

challenge 2015 database to detect genuine speech phonograms 

and spoof attacks. In SVM training the efficient LIBLINEAR 

[12] library was used for calculations in order to achieve the 

necessary accuracy and computational speed. 

 

2.3. DBN-Classification 
 

Alternatively, we used a classifier based on Deep Belief 

Network with softmax output units and stochastic binary 

hidden units [13] (Figure 2). DBN takes normalized i-vectors 

from the i-vector extractor as input data. We used layer-wise 

pretreating of the layers by means of Restricted Boltzmann 

Machines (RBMs) and then applied back-propagation to train 

the DBN in a supervised way to perform classification. 

 

Figure 2: DBN-Classification. 

3. FRONT-END FEATURES  
 

In this section we describe a number of different acoustic 

features that were effective for the ASVspoof Challenge 2015 

task. 

 

3.1. Amplitude spectral features 
 

As short-term amplitude spectrum acoustic features to be used 

in the ASV spoofing attack detection system we selected mel 

frequency coefficients, which were obtained by using the 

discrete cosine transform for Mel-Frequency Cepstral 

Coeffitients (MFCC) and principal component analysis for 

Mel-Frequency Principal Coeffitients (MFPC). These features 

accurately represent the general characteristics of the vocal 

tract. 

MFCC coefficients represent the short-term power 

spectrum of the speech signal, based on the application of the 

discrete cosine transform to the log power spectrum on a 

nonlinear mel scale of frequency (Figure 3). To derive the 

MFCC coefficients we used a Hamming window function with 

the window length equal to 256 and 50% overlap. 

We kept the first 12 MFCC coefficients and their first and 

second-order derivatives as the most informative acoustic 

features, thereby obtaining a 36-length feature vector. 

 

Figure 3: MFCC feature extractor. 

The MFPC coefficients were obtained similarly to the 

MFCC coefficients, but using eigenvector basis instead of the 

discrete cosine basis to achieve decorrelation of the informative 

acoustic features (Figure 4). Eigenvectors had been calculated 

on the training part of the ASVspoof Challenge 2015 database. 

 

Figure 4: MFPC feature extractor. 

3.2. Phase-based features 
 

In order to take into account phase information of the speech 

signal we used the cos-phase features described in [14]. These 
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features were extracted from the phase spectrum, obtained by 

the Fourier Transform, as follows: 

1. The unwrapped phase spectrum was normalized by 

applying the cosine function to change its range to [-1; 1]. 

2. Dimensionality reduction was then performed by means of 

principal component analysis, the basis of which had been 

calculated beforehand on the training part of the ASVspoof 

Challenge 2015 database. 

Similarly to amplitude spectrum features, we selected only 

the first 12 coefficients with their first and second-order 

derivatives to form the resulting feature vector CosPhase 

Principal Coeffitients (CosPhasePC). 

 

Figure 5: CosPhasePC feature extractor. 

3.3. Wavelet-based features 
 

We decided to introduce detailed time-frequency analysis of 

the speech signals in our countermeasures. For this purpose we 

used front-end features based on applying the wavelet-packet 

transform [10], adapted to the mel scale (Figure 6). In the 

wavelet-decomposition we used Daubechies wavelets db4. 

 

Figure 6: Wavelet Packet 

Transform. TKE is a Teager 

Kaiser energy 

 

Figure 7: MWPC feature 

extractor 

Instead of the classical energy of the frequency sub-bands, 

here we applied the Teager Keiser Energy Operator (Figure 6). 

Teager Keiser Energy (TKE) is more informative than classical 

sample energy. Moreover, it is a noise-robust parameter for 

speech signal [15]. We used the following equation for TKE 

evaluation: Ψ(ݏሺݐሻ) = ሻଶݐሺݏ − ݐሺݏ − 1ሻݏሺݐ + 1ሻ  (1) 

where  ݏሺݐሻ is the output signal temporal sample of the 

considered sub-band. 

For extracted features decorrelation, similarly to 3.1 and 

3.2, we consistently applied projection on the eigenvector basis 

to derive 12 coefficients. We called these features Mel Wavelet 

Packet Coefficients (MWPC) for short. Equivalently to 3.1 and 

3.2, here we observe MWPC with its first and second-order 

derivatives (Figure 7).  

To derive the MWPC coefficients we also used a 

Hamming window function with the window length equal to 

256 and 50% overlap. 

 

4. EXPERIMENTS 
 

For training all parameters of our anti-spoofing systems we 

used training dataset. All the experiments, described below, 

were performed on the development dataset. According to the 

challenge conditions [9], the training and development datasets 

contained 5 spoofing attacks of types S1-S5: S1,S2,S5 were 

voice conversion algorithms and S3, S4 were HMM-based 

speaker-adapted speech synthesis methods. 

For example, Figure 8 presents LDA projections of the 

MWPC based i-vectors for the subset of the development 

dataset on the 3 principal components �ଵ, �ଶ, �ଷ, evaluated on 

the training dataset. 

 

Figure 8: The LDA projections of MWPC based  

i-vectors on principal components �ଵ, �ଶ, �ଷ. 

In Figure 8 we can see that that human class is well 

separated from the spoofing classes. This allows us to argue 

that integration of SVM linear classification methods can be 

efficient for solving the spoofing detection task in this space. 

Note that in this feature space 3 groups of spoofing classes can 

also be easily discriminated: G1 is the group of HMM-based 

speech synthesis (S3+S4); G2 is the group of simple Voice 

conversion techniques (S1+S2); G3 represents Festvox voice 

conversion method. 

Table 1 demonstrates resulting EER estimates (%) of the 

TV-SVM based system with different front-end features, 

described in Section 3, obtained on the development dataset. 

These results were obtained with the use of 256-component 

UBM and 200 dimensional i-vector. 

Table 1. Experimental results for the TV-SVM systems for 

different types of spoofing algorithms, EER (%). 

Features 
Spoofing algorithm 

S1 S2 S3 S4 S5 All 

MFCC 0.38 2.13 0.36 0.39 1.48 1.14 

MFPC 0.13 0.29 0.09 0.09 0.37 0.23 

CosPhasePC 0.13 0.20 0.04 0.05 0.23 0.15 

MWPC 0.03 0.11 0.00 0.00 0.08 0.05 

The results show that standard MFCC features are inferior 

in comparison with other front-end features by EER estimates. 

It should be mentioned that substantial EER improvement was 

achieved on MFPC for all spoofing techniques by PCA basis 

applying in MFCC instead of discrete-cosine transform. 

CosPhasePC implementation slightly reduces EER compared 

with MFPC. Features based on the multiresolution wavelet 

transform outperform all other proposed features, reaching 

0.05% EER for all known attacks. Note that during our 

experiments we determined that using the TKE operator in 

MWPC demonstrates better results than classical energy. 
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4.1. Fusion 
 

In this work we explored fusion of systems based on different 

front-end features in the i-vector space. All i-vectors derived 

from different extractors were concatenated in one common i-

vector, as shown in Figure 1. Results for different fusion 

systems confirm that for all combinations of features EER 

estimations for a known spoofing attack is close to 0% 

(Table 2). However, the zero error of spoofing detection for the 

development dataset was achieved only by implementing the 

combination of CosPhasePC and MWPC features. 

Table 2. Experimental results for the fused TV-SVM systems for 

all spoofing algorithms, EER (%) 

Features All known attacks 

MFCC, MFPC, CosPhase 0.03 

MFСC,MFPC, MWPC 0.03 

MFCC,MWPC,CosPhase 0.00 

MFPC,MWPC, CosPhase 0.00 

 

4.2. Classifiers 
 

Experiments of the fused TV systems with the combination of 

MFCC, MFPC and CosPhasePC feature extractors based on 

SVM and DBN classifiers showed that SVM-based system 

achieved 0.03% EER on the development dataset, which is 

better than 0.04% EER of DBN-based system. 

 

5. EVALUATION RESULTS 
 

Based on the results of our experiments on the development 

dataset, we decided to propose 3 systems according to the 

common condition of the ASVspoof Challenge 2015. 

Our Primary system was implemented according to the 

scheme on Figure 1 with a pre-detection step. MFCC, MFPC 

and CosPhasePC were selected to be the informative acoustic 

features in this system. The UBM was represented by a 1024-

component Gaussian mixture model of the described features, 

and the dimension of the TV space was 400. Here we used 

SVM for classification. 

In our Contrastive 1 system, in contrast to the Primary 

system, a pre-detector was not used, and MWPC features were 

used instead of MFCC. 

Our third system Contrastive 2 also did not use a pre-

detector, and instead of the SVM classifier it applied a 

nonlinear DBN classifier. In this system, in order to avoid 

overfitting, we reduced the UBM component number to 256 for 

all feature types, while the dimension of the TV space was 

reduced to 200. 

In addition to known spoofing attacks, the evaluation 

dataset contained spoofing attacks of 5 unknown types S6-S10. 

Table  presents the evaluation results. 

Table 3. Evaluation results of the STC systems, EER (%). 

System 
Known 

attacks 

Unknown 

attacks 
All 

Primary 0.008 3.922 1.965 

Contrastive 1 0.009 4.891 2.450 

Contrastive 2 0.017 6.162 3.090 

Primary (no pre-detection) 0.008 5.151 2.579 

In spite of the good results of the STC systems for known 

attacks, results obtained for unknown attacks are much worse: 

our best primary system reached 3.92% EER. This observation 

suggests the necessity to improve countermeasures to achieve 

robust performance on unknown attacks. 

The primary system showed the best results, in particular 

due to the energy pre-detection step. To confirm this suggestion 

we compared this result with EER for primary system without 

pre-detector (Table 3). This pre-detector will not be useful in 

case of channel effects or additive noise. That is a significant 

limitation of this anti-spoofing system. 

Unlike the Primary system, the Contrastive 1 system did 

not use the pre-detector, and it demonstrated relatively good 

performance according to the challenge results. We see the 

reason for that in the MWPC features. The advantage of these 

features is the wavelet-transform, which makes it possible to 

produce detailed multiresolution signal analysis. That provides 

an additional decrease of EER in the spoofing detection task. 

Results for the Contrastive 2 system (4), which used the 

DBN classifier, turned out to be the worst. In this system we 

probably failed to avoid the effects of the stronger overfitting 

on the training dataset, in comparison with SVM. According to 

these results it can be suggested that it is better to use linear 

SVM classifier in the proposed system (Figure 1). 

Table 4. Evaluation results for STC systems for different types 

of spoofing algorithms, EER (%). 

Spoofing 

 algorithm 

System 

Primary Contrastive 1 Contrastive 2 

S1 0.004  0.005  0.000  

S2 0.022 0.022 0.058 

S3 0.000 0.000 0.000 

S4 0.000 0.000 0.000 

S5 0.013 0.020 0.029 

S6 0.019 0.024 0.046 

S7 0.000 0.007 0.000 

S8 0.015 0.014 0.124 

S9 0.004 0.006 0.005 

S10 19.571 24.401 30.636 

 

6. CONCLUSIONS 
 

In this paper we produce comprehensive investigation of the 

feature spaces applicability and effectiveness of different 

classifiers in solution of the spoofing detection task for 

ASVspoof Challenge 2015. The submitted STC systems were 

based on TV modelling in the space of different features and a 

linear SVM-based classifier or a nonlinear DBN-based 

classifier. 

During our research we tested different front-end features, 

including features derived from phase spectrum and features 

obtained by applying wavelet-transform, in order to determine 

reliable and robust countermeasures in the anti-spoofing task. 

Experiments performed on the development and test datasets of 

the Challenge demonstrate that using phase-based and wavelet-

based features provides a substantial input into the efficiency of 

the resulting STC systems. Our best result on the test dataset is 

1.965% EER for all spoofing attacks. 
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