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ABSTRACT 

 

Few studies on speaker verification have directly used a deep 

neural network (DNN) as a classifier. It is difficult to directly 

apply a DNN as a discriminative model to speaker-

verification tasks because the training data for each speaker 

are very limited. Therefore, a b-vector has been proposed to 

solve the problem. However, the DNN with the b-vectors 

showed lower performance than the conventional i-vector 

probabilistic linear-discriminant analysis (PLDA) system.  

In this paper, we propose an improved version of the b-vector 

DNN system, which incorporates the background speakers’ 

information into the DNN. In this study, each input feature is 

paired with a representative background speaker’s feature 

vectors, and a b-vector is extracted from each pair; thus, 

feeding background information into the DNN. We 

confirmed that the performance improvements of the 

proposed system compensate for the shortcomings of 

conventional b-vectors in experiments carried out using the 

National Institute of Standards and Technology 2008 

Speaker-Recognition Evaluation tests.  

 

Index Terms— speaker verification, b-vector, DNN 

 

1. INTRODUCTION 

 

In recent years, deep neural networks (DNNs) have been 

applied to automatic speech-recognition (ASR) studies, and 

considerably improved the performance [2, 3]. However, 

performance improvement was difficult when using a DNN 

as a classifier in speaker-verification tasks. Two problems 

arising in the application process may cause this difficulty.  

The first problem is a lack of data for target speakers. It is 

a well-known fact that supervised DNN training requires a 

large amount of labeled data. However, in reality, collecting 

sufficient data from a target speaker is very difficult. The 

second is that we need as many models as there are speakers. 

Models for each target speaker are required for speaker 

verification, as in a Gaussian supervector support-vector 

machine (GSV-SVM) or a Gaussian-mixture model universal 

background model (GMM-UBM) [4, 5]. However, training 

DNNs for every possible target speaker is too costly.  

Because of these problems, few speaker-verification 

studies have directly applied DNNs as classifiers. For 

example, some studies used DNNs to calculate the Baum-

Welch statistics needed for i-vector extraction [6, 7] and 

another study used a DNN to transform the i-vectors [8]. On 

the other hand, the b-vector system [1] directly applies the 

DNN as a classifier to speaker verification; however, the b-

vector system had lower performance than expected for 

speaker verification. Through various experiments using the 

b-vectors, we found that the b-vector system has higher 

performance than the i-vector cosine similarity system, but 

lower performance than the i-vector probabilistic linear-

discriminant analysis (PLDA) system.  

Therefore, in this paper, we examine the problems that cause 

the performance degradation of the b-vectors and attempt to 

find an appropriate solution for the DNNs. Then, we 

investigate the applicability of DNNs as classifiers in speaker 

verification. In Sections 2 and 3, we describe the i-vector 

PLDA system and the conventional b-vector system, 

respectively. Section 4 describes the proposed system. 

Finally, Sections 5, 6, and 7 describe the experiments, 

conclusions, and future work, respectively. 

 

2. I-VECTOR SYSTEM 

 

An identity vector (i-vector) is a state-of-the-art front-end 

technique in speaker recognition; this effective factor-

analysis method can extract an identity vector from an 

utterance [9]. The total variability matrix used for extracting 

i-vectors contains the class-dependent and independent 

subspaces in the original space of the utterance supervectors. 

Generally, Gaussian-mixture model (GMM) supervectors are 

used as the original utterance supervectors.  

We can represent high-dimensional input vectors using 

low-dimensional i-vectors, as in equation (1). 

 

 𝐌 = 𝐦+ T𝐰,    (1) 

 

where 𝐌 is an input utterance vector, 𝐦 is the global mean 

vector (generally a universal-background model (UBM) 

supervector), T is the total variability matrix containing 

utterance dependent subspaces, and w is the i-vector. 

Probabilistic linear-discriminant analysis (PLDA) is a factor-

analysis technique first proposed in [10], which was shown 

to perform well for modeling and scoring i-vectors [11]. 

Class-dependent and independent factors contained in i-

vectors can be analyzed using the PLDA model. The PLDA 
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model represents the input i-vectors using the sum of several 

terms, as in equation (2). 

 

 𝐰 = 𝛍 + Φ𝒉𝒊 +Ψ𝒔𝒊𝒋 + 𝛜,   (2) 

 

where 𝐰 is an input i-vector, 𝛍 is the overall mean vector of 

the training data set, Φ is the matrix containing the subspaces 

of between-class factors, 𝒉𝒊 is the position of class 𝒊 in the 

between-class subspace, Ψ is the matrix containing subspaces 

of the within-class factor, 𝒔𝒊𝒋 is the position of class 𝒊 and 

utterance 𝒋 in the within-class subspace, and 𝛜 is a residual-

noise term. 

 

3. B-VECTOR SYSTEM 

 

The b-vector system [1] is proposed for solving speaker 

verification tasks as binary-classification problems. In this 

system, a pair of utterances is represented by a b-vector that 

describes the relationship between them. Each utterance is 

generally represented as an i-vector, and a b-vector is 

generated using a concatenation of the results of binary 

operations, such as the addition or subtraction of two i-

vectors.  

For example, a b-vector can be calculated from i-vectors 

𝒘1 and 𝒘2 by concatenating the following vectors. 

 

𝒃𝑎 = 𝒘1 ⊕𝒘2,    (3) 

𝒃𝑚 = 𝒘1 ⊗𝒘2,    (4) 

𝒃𝑠 = |𝒘1 ⊖𝒘2|,    (5) 

𝒃𝑟 = | log |𝒘1| ⊖ log |𝒘2| |,  (6) 

 

where ⊕ , ⊗  and ⊖  are the element-wise addition, 

multiplication and subtraction operations, respectively. 

The b-vectors do not contain intuitive information that can 

be utilized for speaker recognition. However, a binary 

classifier, such as an SVM or DNN, can classify them, 

whether the b-vector is made from two vectors from the same 

speaker or from different speakers. The entire b-vector 

system is summarized as feature extraction regarding the 

relationship between two utterances, and binary classification 

for speaker verification. In [1], a b-vector system that uses a 

DNN as a classifier was proposed. However, the performance 

of the b-vector system was lower than expected. In our 

empirical experiments, the b-vector system showed higher 

performance than the i-vector cosine-similarity system (i-

vector CSS), whereas the system had lower performance than 

the i-vector PLDA system. In the next section, we introduce 

a system expected to improve the performance of the b-vector 

system. 

 

4. PROPOSED SYSTEM 

 

We considered that the lack of background information in the 

b-vectors might cause the performance degradation of the 

conventional system. In the conventional system, a b-vector 

is extracted using only two i-vectors. Therefore, the b-vector 

is missing information about the complete i-vector 

distribution in the total variability space, and the background 

speakers. For example, the GMM-UBM system uses two 

models, which represent a target speaker and a background 

speaker. By calculating the likelihood ratio from the two 

models, the GMM-UBM system facilitates the consideration 

of not only the information about the target speaker but also 

about the background speakers. In addition, the i-vector 

PLDA system considers information about the entire i-vector 

space by extracting speaker factors from a development i-

vector set. 

We devised a method to add information about the 

background speakers into the b-vector system. The devised 

method uses vectors that refer to information about the 

background speakers (called r-vectors for convenience), with 

the b-vector as an input to the classifier.  

The r-vectors can be extracted using the following steps. 

The first step is to extract features (typically i-vectors) from 

the development utterances, an enrollment, and a verification 

utterance (user data). The second step is to select 

representative feature vectors from the development feature 

set. Clustering techniques, such as k-means, can be used to 

select representative feature vectors. The third step is to 

extract two r-vectors using two user feature vectors (from the 

enrollment and a verification utterance) and a representative 

vector from the background (development) set.  

Figure 1. Flow of the complete rb-vector system containing the extraction of r-vectors 
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Each of the two user-feature vectors is paired with a 

representative background vector, and a b-vector is extracted 

from each pair. Principal component analysis (PCA) is 

applied to the b-vectors extracted from the user and 

background vectors to reduce the dimensionality. Finally, an 

r-vector is made by concatenating the dimensionality-

reduced b-vectors from the two pairs. It is possible that the 

lack of background information in the b-vectors mentioned 

above is mitigated by using the r-vectors, because the r-

vectors represent the relation between the background 

speakers’ vectors and the new user’s vectors. The proposed 

system uses a DNN as a classifier, and the concatenation of 

the b-vectors and r-vectors as an input to the DNN. The 

complete proposed system is depicted in Figure 1. 

In this section, we introduced a simple process for 

extracting r-vectors. Any r-vectors can be used in the 

proposed rb-vector system, if they contain information about 

the relationship between a user and background utterances. 

 

5. EXPERIMENTS 

 

5.1. Database 

All the experiments in this study were carried out using the 

male portion of the core condition (short2-short3) in the 

National Institute of Standards and Technology (NIST) 2008 

Speaker-Recognition Evaluation (SRE) tests [12]. Table 1 

shows all corpora that were used to estimate the UBM, total 

variability matrix (TVM), linear discriminant analysis (LDA), 

and PLDA models. 

 

Table 1. Databases used as the development set 

 

5.2. i-vector PLDA system 

60-dimensional feature vectors (19 Mel-frequency cepstral 

coefficients (MFCC) + energy + Δ + ΔΔ) were extracted 

using a 25-ms window with 10-ms shifts, and then mean and 

variance normalization (MVN) was applied. 

A gender-dependent UBM, containing 2048 Gaussian 

components, and a TVM with dimensionality 400 were 

trained, both with 10 iterations. LDA was applied to reduce 

the i-vector to 150 dimensions. Length normalizations were 

applied to the i-vector before and after applying the LDA. For 

the baseline system, a PLDA model was estimated using the 

dimensionality-reduced i-vectors. An open-source speech 

and speaker-recognition toolkit, Kaldi, was used for the 

baseline system [13]. 

 

 

 

5.3. b-vector extraction 

i-vectors without length normalization were used to extract 

the b-vectors. The b-vectors were a concatenation of the 

results of the element-wise addition, multiplication, 

subtraction, and ratio operations of two input i-vectors. 

Therefore, a 600-dimensional b-vector was extracted for each 

two (150-dimensional) i-vectors. 

 

5.4. r-vector extraction 

The r-vectors were extracted as explained in the previous 

section. First, 30 representative background i-vectors were 

selected from the development set using the k-means 

algorithm. The input i-vectors were paired with the 

representative-background i-vectors, and the b-vectors were 

extracted from each pair. PCA was applied to reduce the 

dimensionality of these b-vectors. The dimensionality-

reduced 10-dimensional b-vectors were concatenated to 

comprise the r-vector. Finally, 300-dimensional r-vectors 

were extracted from each input i-vector. 

 

5.5. DNN training 
The DNN has five hidden layers. Each hidden layer includes 

2048 fully connected neurons activated by a hyperbolic-

tangent function. The DNN was trained using 1200-

dimensional rb-vectors. Approximately 200,000 rb-vectors 

were extracted from the development set. For each training 

epoch, the DNN was trained with a learning rate of 0.01, and 

a “drop-out” technique was applied. All DNNs were trained 

in the Theano environment [14, 15] 

 UBM TVM LDA PLDA 

Fisher English Training O O   

NIST SRE 2004 O O O O 

NIST SRE 2005 O O O O 

Switchboard Cellular  O O  

Switchboard-2  O O  

Figure 2. EERs of the DNN systems for each epoch 
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For the DNN to learn the r-vectors and b-vectors equally 

well, we applied a pre-training technique that is different 

from conventional pre-training. First, the DNN was trained 

using only r-vectors, by setting the b-vector values to 0. After 

the 50th epoch, the b-vectors were used with the r-vectors to 

train the DNN, with a learning rate of 0.1. 

 

5.6. Results 
Figure 2 shows the experimental evaluation results of the 

conventional b-vector system and the proposed r-vector 

system. The graph shows the average equal-error rate (EER) 

of all DETs in the SRE 2008 core condition of each system. 

In the graph, the b-vector system has an EER lower than 5%, 

and this performance converges before the 10th epoch. The r-

vector system shows a relatively high EER because it 

contains only supplemental information; the performance 

converges after the 100th epoch.  

The rb-vector system, which uses b-vectors and r-vectors 

together, shows performance similar to the b-vector system. 

This result could indicate that the information contained in 

the r-vector was ignored because the performance converged 

before sufficiently training the r-vector (until about the 100th 

epoch). More precisely, the DNN in the rb-vector system is 

trained to ignore the r-vectors, of which the discernment is 

low before the 10th epoch. To solve the problem, we 

introduced the pre-training concept so that the DNN can 

better combine the r-vector and b-vector information. 

Table 2 shows the experimental evaluation results of the 

i-vector PLDA system, the b-vector system, and the rb-vector 

system. The average performance of the proposed rb-vector 

system is higher than the conventional b-vector system and 

the i-vector PLDA, based on the EER. Based on the minimum 

decision-cost function (minDCF), the average performance 

of the rb-vector system is similar to the i-vector PLDA system, 

and higher than the b-vector system. 

 

6. CONCLUSIONS 

 

In this paper, we addressed the problems of the conventional 

b-vector system and proposed the rb-vector system as a 

solution. We evaluated the proposed system using the NIST 

SRE 2008 core condition. The results of the experimental 

evaluation showed that the relative error reduction of the 

proposed system over that of the i-vector PLDA system was 

7.44%, based on the average EER. 

The contributions of this paper related to prior work are 

as follows. A direction for improving the conventional b-

vector system was proposed. This direction included using 

vectors containing information about the background 

speakers, along with the b-vectors. In addition, the possibility 

of DNNs as classifiers for speaker verification was confirmed. 

Therefore, many DNN studies can more directly be applied 

to speaker-verification studies. 

 

7. FUTURE WORKS 

 

Research on the proposed system is still in its early stages. 

Therefore, additional work will be needed to establish the rb-

vector system as a stable speaker-verification method. 

Firstly, the b-vectors must be optimized. Presently, the 

utterance pairs are arbitrarily comprised. However, it will be 

possible to apply support vectors to the process of extracting 

r-vectors. Through experimentation, we found that training 

the r-vectors is a relatively long process, compared to the b-

vectors. To solve this problem, we will use the tandem 

features of the r-vectors, as in [8]. Finally, the DNN in the rb-

vector system can be optimized using various techniques, 

such as pre-training or max-out nodes. 
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Table 2. Performance in EER and minDCF of the PLDA and DNN systems (NIST08, short2-short3, male set) 

  Avg DET1 DET2 DET3 DET4 DET5 DET6 DET7 DET8 

EER(%) 

i-vector PLDA 4.30 5.79 0.81 5.73 7.01 4.98 4.67 3.14 2.30 

b-vector DNN 4.42 6.38 0.40 6.56 6.42 5.46 4.90 2.94 2.30 

Rb-vector DNN 3.98 5.85 0.40 5.98 4.63 4.17 5.46 3.23 2.21 

minDCF 

i-vector PLDA .0197 .0266 .0008 .0261 .0287 .0200 .0249 .0172 .0138 

b-vector DNN .0206 .0282 .0028 .0287 .0302 .0238 .0251 .0147 .0112 

Rb-vector DNN .0197 .0268 .0008 .0273 .0292 .0188 .0276 .0160 .0112 

  

5468



9. REFERENCES 
 
[1] H. S. Lee, Y. Tso, Y. F. Chang, H. M. Wang and S. K. Jeng,  

“Speaker verification using kernel-based binary classifiers with 

binary operation derived features,” Acoustics, Speech and Signal 

Processing (ICASSP), pp. 1660-1664, 2014. 

[2] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent 

pre-trained deep neural networks for large-vocabulary speech 

recognition,” Audio, Speech, and Language Processing, pp. 30-42, 

2012. 

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed, N. Jaitly, 

and B. Kingsbury, “Deep neural networks for acoustic modeling in 

speech recognition: The shared views of four research groups,”  

Signal Processing Magazine, pp. 82-97, 2012. 

[4] W. M. Campbell, D. E. Sturim, and D. A. Reynolds, “Support 

vector machines using GMM supervectors for speaker verification,” 

IEEE Signal Process. Lett, vol. 13, no. 5, pp. 308-311, 2006. 

[5] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker 

verification using adapted Gaussian mixture models,” Digital Signal 

Process., vol. 10, no. 1, pp. 19-41, 2000. 

[6] Y. Lei, N. Scheffer, L. Ferrer and M. McLaren, “A novel scheme 

for speaker recognition using a phonetically-aware deep neural 

network,” Acoustics, Speech and Signal Processing (ICASSP), pp. 

1695-1699, 2014. 

[7] P. Kenny, V. Gupta, T. Stafylakis, P. Ouellet and J. Alam, “Deep 

neural networks for extracting baum-welch statistics for speaker 

recognition,” Odyssey: Speaker Lang. Recognit. Workshop, 2014. 

[8] F. Richardson, D. Reynolds, and N. Dehak, “A Unified Deep 

Neural Network for Speaker and Language Recognition,” arXiv 

preprint arXiv:1504.00923. 

[9] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel and P. Ouellet, 

“Front-end factor analysis for speaker verification,” Audio, Speech, 

and Language Processing, pp. 788-798, 2011. 

[10] S. Ioffe, “Probabilistic linear discriminant analysis,” Computer 

Vision–ECCV, pp. 531-542, 2006. 

[11] P. Kenny, “Bayesian Speaker Verification with Heavy-Tailed 

Priors,” Odyssey: Speaker Lang. Recognit. Workshop, 2010. 

[12] The NIST Year 2008 Speaker Recognition Evaluation Plan, 

http://www.itl.nist.gov/iad/mig/tests/sre/2008. 

[13] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, 

N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. 

Silovsky, G. Stemmer, and K. Vesely, “The kaldi speech recognition 

toolkit,” IEEE 2011 Workshop on Automatic Speech Recognition 

and Understanding, 2011. 

[14] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, 

A. Bergeron, N. Bouchard, D. Warde-Farley and Y. Bengio. 

“Theano: new features and speed improvements,” NIPS 2012 deep 

learning workshop. 

[15] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. 

Desjardins, J. Turian, D. Warde-Farley and Y. Bengio, “Theano: A 

CPU and GPU Math Expression Compiler,” Proceedings of the 

Python for Scientific Computing Conference (SciPy),  June 30 - July 

3, 2010. 

5469


